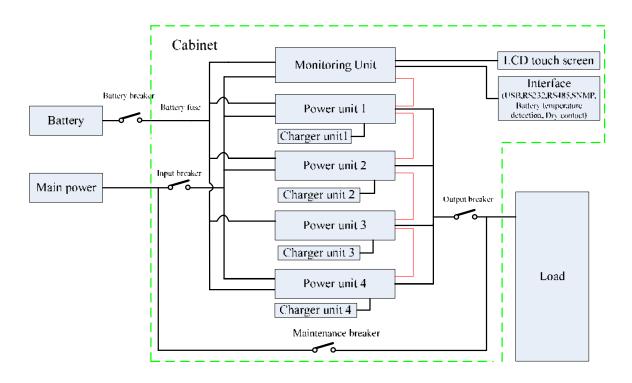
# EA900 3-3 10-120KVA UPS

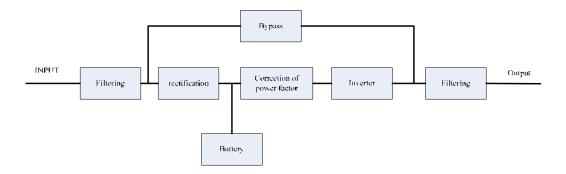
Maintenance Manual

# CONTENTS

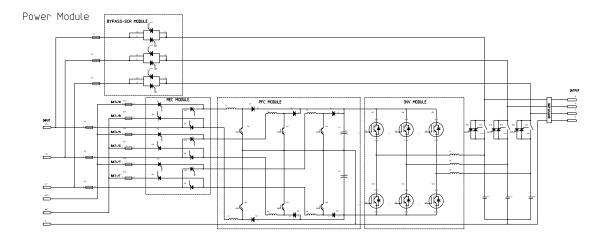

| 1. Principle Block Diagram                                          | 4  |
|---------------------------------------------------------------------|----|
| 1.1 Overall principle block diagram                                 | 4  |
| 1.2 Principle block diagram and topological graph of power module   | 4  |
| 1.3 Principle block diagram and topological graph of charger module | 5  |
| 2. Principle of Power Module                                        | 6  |
| 2.1 Fan driving module                                              | 6  |
| 2.2 IGBT driving module (IGBTDR)                                    | 7  |
| 2.3 SCR driving module (SCRDRV)                                     | 9  |
| 2.4 Auxiliary power supply module (SPS)                             | 10 |
| 2.5 Soft start module (SOFTSTART)                                   | 12 |
| 2.6 Input board (IP-BOARD)                                          | 14 |
| 2.7 Rectifier module (RECTIFIER)                                    | 16 |
| 2.8 Bypass SCR module (BPS-SCR)                                     | 17 |
| 2.9 Power factor correction module (PFC)                            | 18 |
| 2.10 Inverter module (INVERTER)                                     | 21 |
| 2.11 Inductance capability board (LC-BOARD)                         | 22 |
| 2.12 IGBT connecting plate (IGBT-CONNECTOR)                         | 25 |
| 2.13 Output board (OP-BOARD)                                        | 27 |
| 2.14 Output filter board (OP_EMI)                                   | 29 |
| 2.15 Power socket connecting plate (IN_CON_Z)                       | 30 |
| 2.16 Power socket connecting plate (IN_CON_T)                       | 31 |
| 2.17 Lamp Panel (POWER_MODULE LED)                                  | 32 |
| 2.18 Control connecting plate (CNTL-CONNECTOR)                      | 32 |
| 2.19 Control panel (CNTL)                                           | 35 |
| 3. Principle of Charger module                                      |    |
| 3.1 The introduction of charger module                              |    |
| 3.2 Auxiliary power supply module (SPS)                             | 40 |
| 3.3 CHGR_CNTL                                                       | 42 |
| 3.4 CHGR_PSDR                                                       | 45 |
| 4. Principle of Monitoring Module                                   | 46 |
| 4.1 Communicational power supply board (COM_SPS)                    | 46 |
| 4.2 Input connecting plate (INPUT_CNT)                              | 48 |
| 4.3 Control panel of monitoring module (MONITOR BOARD)              | 49 |
| Chapter II Start Debugging of Module                                | 50 |
| 1. Start Debugging of Power Module                                  | 50 |
| 1.1 Power on of DC source and BUS voltage sampling                  | 50 |
| 2. Start Debugging of Charger module                                | 51 |
| 2.1 Main power current-limiting start and BUS voltage sampling      | 51 |
| 2.2 Measurement of charging voltage                                 | 52 |
| Chapter III Fault and Warning Code of Module                        | 52 |
| 1. Fault and Warning Code of Power Module                           | 52 |
| 1.1 Warning code of power module                                    | 52 |

| 1.2 Fault code of power module                             | 54 |
|------------------------------------------------------------|----|
| 2. Fault and Warning Code of Charger module                | 55 |
| 2.1 Warning code of charger module                         | 55 |
| 2.2 Fault code of charger module                           | 55 |
| Appendix:                                                  | 57 |
| 1. Connection Diagram of Single Board of Power Module      | 57 |
| 2. Connection Diagram of Single Board of Monitoring Module |    |

Chapter I Principle and Functions of the Product


# 1. Principle Block Diagram

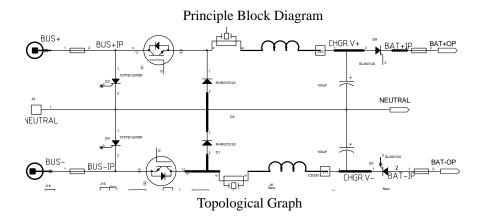
### 1.1 Overall principle block diagram




Schematic Diagram of EA900 10-120K Overall Unit Product

### 1.2 Principle block diagram and topological graph of power module




Principle Block Diagram



**Topological Graph** 

#### 1.3 Principle block diagram and topological graph of charger module





- (1) Input filtering: finishing filtering of input main power to provide clean power supply for the module.
- (2) Rectification: take AC/DC switching of main power after filtering.
- (3) Correction of power factor: boost to the DC after rectification for inverter use.
- (4) Inverter: switch the AC power after boosting into stable AC output.
- (5) Bypass: it will switch to bypass mode automatically to prevent power failure of the load when UPS is overloaded or the inverter is abnormal.
- (6) DC/DC (BUCK): reduce the BUS voltage into charge voltage of the battery.
- (7) Output filtering: finishing filtering of output for the module to provide clean power supply for the load.

#### 2. Principle of Power Module

Power module is composed by several functional modules, including fan driving module, IGBT driving module, SCR driving module, auxiliary power supply module, soft start module, input board, rectifier module, bypass SCR module, power factor correction/boost module, inverter module, inductance capacitor plate, IGBT connecting plate, output board, output filter board, power socket connecting plate IN\_CON\_Z, power socket connecting plate IN\_CON\_T, lamp panel, control connecting plate and control panel.

#### 2.1 Fan driving module

#### 2.1.1 Introduction for functions of fan driving module

Fan of machine can accelerate heat dissipation of elements for the whole unit, and the fan driving module can achieve driving, speed adjustment and inspection of working condition of the fan. It will result in excessive temperature of elements for the machine and even explosion of the machine if the fan cannot work normally due to fault of fan driving module. In the fan driving module, FANSPD is the control signal to adjust rotate speed of the fan, magnitude of FANSPD DUTY controls rotate speed of the fan, that is, the larger DUTY is, the faster rotate speed of fan is; and FANDET is used to inspect rotate speed of the fan.

### 2.1.2 Schematic circuit and physical map of fan driving module

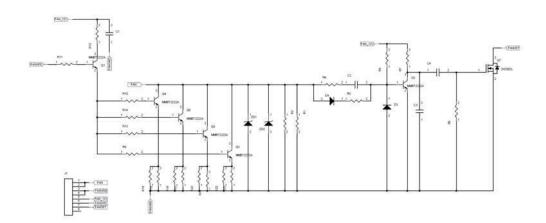



Figure 2.1.1 Schematic Circuit of Fan Driving Module



Figure 2.1.2 Physical Map of Fan Driving Module

| JI  |           |         |                                                     |
|-----|-----------|---------|-----------------------------------------------------|
| No. | Interface | Label   | Explanation                                         |
| 1   | J1-1/2    | FAN     | Interface of fan                                    |
| 2   | J1-3/4    | FANGND  | Ground                                              |
| 3   | J1-5      | FAN_12V | 12V working power supply of the fan                 |
| 4   | J1-6      | FANSPD  | Control signal of adjusting rotate speed of the fan |
| 5   | J1-7      | FANDET  | Sampling signal of fault for the fan                |

#### 2.1.3 Explanation for signal interface of fan driving module

#### **2.2 IGBT driving module (IGBTDR)**

**T1** 

#### 2.2.1 Introduction of principle of IGBT driving module

IGBT driving module adopts the structure of forward transformer, and the IC3845 works under effect of FAN12V, the output PWM wave controls on/off of MOS pipe. When the MOS pipe is on, energy in edge of transformer will be transformed to all secondary edges which will produce needed power supply to provide it to optical coupling chip 316J. the 316J can get the PWM output wave (average of high level is +15V and average low level is -10V) with positive and negative poles, which has the same pulse width and frequency with outer PWM wave, by effect of outer output PWM wave to drive the IGBT pipe. When the voltage detected by VEC over-current protection is high to 7V due to over-current among CE poles of IGBT pipe, the 316J will produce VCE protective warning FAULT signal t once and turn off the driving output signal to protect the IGBT.

2.2.2 Schematic circuit and physical map of IGBT driving module



Figure 2.2.1 Physical Map of IGBT Driving Module

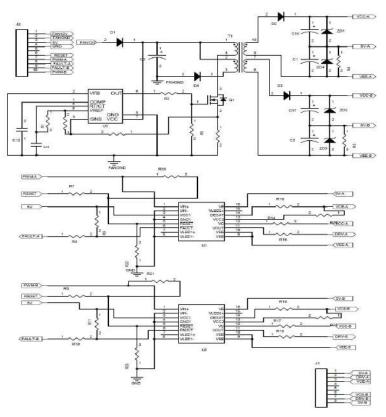



Figure 2.2.2 Schematic Circuit of IGBT Driving Module

# 2.2.3 Explanation for signal interface of IGBT driving module

VCE-A

VCE-B

DRV-B

0V-B

т.

3

5

6

7

J2-3

J2-6

J2-7

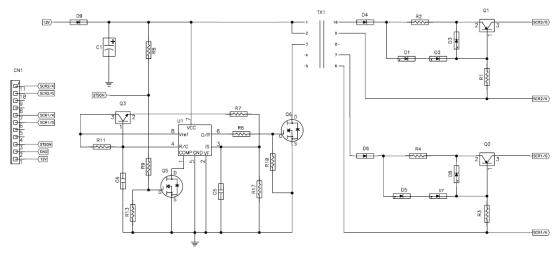
J2-8

| J2  |           |         |                                                |
|-----|-----------|---------|------------------------------------------------|
| No. | Interface | Label   | Explanation                                    |
| 1   | J2-1      | FAN12V  | Input 12V power supply of the fan              |
| 2   | J2-2      | FANGND  | Input ground of the power supply               |
| 3   | J2-3      | 5V      | Input DC 5V power supply                       |
| 4   | J2-4      | GND     | Input corresponding ground of DC 5V            |
| 5   | J2-6      | RESET   | Reset pin                                      |
| 6   | J2-7      | PWM-A   | Input PWM control signal A                     |
| 7   | J2-8      | FAULT-A | VCE-A protective warning signal                |
| 8   | J2-9      | FAULT-B | VCE-B protective warning signal                |
| 9   | J2-10     | PWM-B   | Input PWM control signal B                     |
| J1  |           |         |                                                |
| No. | Interface | Label   | Explanation                                    |
| 1   | J2-1      | 0V-A    | Input reference ground of PWM driving signal A |
| 2   | J2-2      | DRV-A   | Output PWM driving signal A                    |
|     |           |         |                                                |

IGBT VCE sampling A

IGBT VCE sampling B

Output PWM driving signal B


Output reference ground of PWM driving signal B

| ۶ |  |
|---|--|
|   |  |
|   |  |
|   |  |

#### 2.3 SCR driving module (SCRDRV)

#### 2.3.1 Introduction of principle of SCR driving module

Main circuit of SCR driving module is the structure of FLYBACK transformer, the IC3845 working power supply is supplied by 12V power supply, the control signal STSON of SCR driving is in high level at the beginning, there is no PWM output for the IC3845, and there is also no output for the secondary edge of transformer. When the main control panel switches the STSON signal to low level, there is PWM output for IC3845 and the control switch is on and off. When MOS is on, original edge of transformer will store the energy; while when the MOS is off, energy stored by original edge of the transformer will be transferred to the secondary edge which will output two driving voltage sources to drive two SCR.



#### 2.3.2 Schematic circuit and physical map of SCR driving module

Figure 2.3.1 Schematic Circuit of SCR Driving Module



Figure 2.3.2 Physical Map of SCR Driving Module

#### 2.3.3 Explanation for signal interface of SCR driving module

| CN1 |           |       |                             |
|-----|-----------|-------|-----------------------------|
| No. | Interface | Label | Explanation                 |
| 1   | CN1-1     | 12V   | Input 12V DC source         |
| 2   | CN1-2     | GND   | Input ground                |
| 3   | CN1-3     | STSON | Input signal of SCR driving |

| 4 | CN1-6  | SCR1/G | The first driving output positive  |
|---|--------|--------|------------------------------------|
| 5 | CN1-7  | SCR1/K | The first driving output negative  |
| 6 | CN1-10 | SCR2/G | The second driving output positive |
| 7 | CN1-11 | SCR2/K | The second driving output negative |

#### 2.4 Auxiliary power supply module (SPS)

#### 2.4.1 Introduction of principle of SPS

Structure of main circuit of SPS is the structure of FLYBACK transformer. After pressing button of power on after the main power is supplied under main power mode or battery mode, the IC3845 will build a working power supply and start to work, and the driving output pin will output PWM wave form to drive the MOS pipe. When MOS pipe is on, original edge of transformer will store the energy and there is no output for the secondary edge; when MOS pipe is off, energy of transformer will be transferred to all circuits of secondary edge to produce  $\pm 15V$ ,  $\pm 12V$ ,  $\pm 5V$  and FAN12V power supply to supply needed working power supply for the whole UPS system. **2.4.2 Schematic circuit and physical map of SPS** 

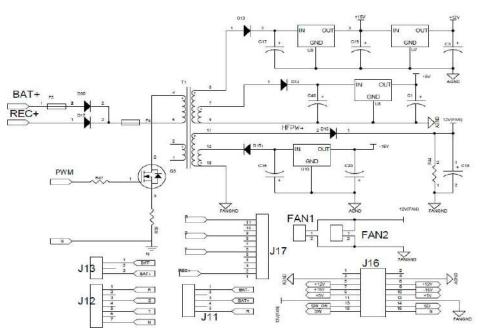



Figure 2.4.1 Schematic Circuit of SPS



Figure 2.4.2 Physical Map of SPS

# 2.4.3 Explanation for signal interface of SPS

| J11 |           | -        |                                                           |
|-----|-----------|----------|-----------------------------------------------------------|
| No. | Interface | Label    | Explanation                                               |
| 1   | J11-1     | BAT-     | Supply negative voltage of battery to SOFTSTART           |
|     |           |          | plate                                                     |
| 2   | J11-3     | BAT+     | Supply positive voltage of battery to SOFTSTART           |
|     |           |          | plate                                                     |
| 3   | J11-5     | R        | Supply Phase R of main power input for                    |
|     |           |          | SOFTSTART plate                                           |
| J12 |           | 1        | 1                                                         |
| No. | Interface | Label    | Explanation                                               |
| 1   | J12-1     | R        | Phase R of main power input                               |
| 2   | J12-3     | S        | Phase S of main power input                               |
| 3   | J12-5     | Т        | Phase T of main power input                               |
| 4   | J12-7     | Ν        | N cable of main power input                               |
| J13 |           |          |                                                           |
| No. | Interface | Label    | Explanation                                               |
| 1   | J13-1     | BAT-     | Battery negative                                          |
| 2   | J13-3     | BAT+     | Battery positive                                          |
| J16 |           |          |                                                           |
| No. | Interface | Label    | Explanation                                               |
| 1   | J16-3/4   | AGND     | Corresponding grounds of output $\pm 15V$ , $\pm 12V$ and |
|     |           |          | +5V                                                       |
| 2   | J16-5/6   | +12V     | Output DC +12V                                            |
| 3   | J16-7     | +15V     | Output DC +15V                                            |
| 4   | J16-8     | -15V     | Output DC -15V                                            |
| 5   | J16-9/10  | +5V      | Output DC +5V                                             |
| 6   | J16-11    | 12V(FAN) | Output 12V DC used to supply power to the fan             |
| 7   | J16-12    | FANGND   | Output ground used to supply power the fan                |
| 8   | J16-13    | SW_ON    | Power signal (used for single module debugging)           |
| 9   | J16-14    | SD       | SPS can be stopped by this signal                         |

| 10  | J16-15    | SW       | Control signal of SPS start                   |
|-----|-----------|----------|-----------------------------------------------|
| 11  | J16-16    | Ν        | Original edge ground of SPS                   |
| J17 |           |          |                                               |
| No. | Interface | Label    | Explanation                                   |
| 1   | J17-1     | REC+     | Rectified positive voltage after rectified by |
|     |           |          | SPS-REC small plate                           |
| 2   | J17-5     | Т        | Phase T of main power                         |
| 3   | J17-8     | S        | Phase S of main power                         |
| 4   | J17-11    | R        | Phase R of main power                         |
| FAN | 1/ FAN2   |          |                                               |
| No. | Interface | Label    | Explanation                                   |
| 1   | FAN1-1/   | 12V(FAN) | 12V DC outputted to the fan                   |
|     | FAN2-1    |          |                                               |
| 2   | FAN1-2/   | FANGND   | Ground outputted to the fan                   |
|     | FAN2-2    |          |                                               |

#### 2.5 Soft start module (SOFTSTART)

#### 2.5.1 Introduction of principle of SOFTSTART

When DSP receives the power signal, it will send the signal of soft start to SOFTSTART module, the relay will be closed, and Phase R of main power or battery will charge the positive and negative BUS after rectification to charge the BUS capacity before starting of PFC circuit. The soft start process will be finished and SOFTSTART module stops working after certain voltage value is boosted for the BUS voltage.

#### 2.5.2 Schematic circuit and physical map of SOFTSTART

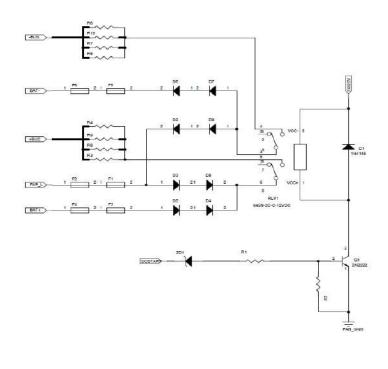









Figure 2.5.1 Schematic Circuit of SOFTSTART

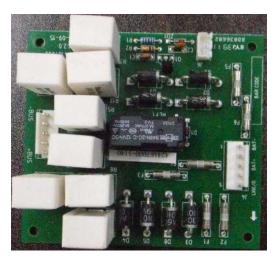



Figure 2.5.2 Physical Map of SOFTSTART

| J4  |           |        |                             |
|-----|-----------|--------|-----------------------------|
| No. | Interface | Label  | Explanation                 |
| 1   | J4-1      | BAT-   | Input battery negative      |
| 2   | J4-3      | BAT+   | Input battery positive      |
| 3   | J4-5      | RI/P_L | Input phase R of main power |

| No. | Interface | Label   | Explanation                           |
|-----|-----------|---------|---------------------------------------|
| 1   | J5-1      | +BUS    | +BUS outputted to LC board            |
| 2   | J5-5      | -BUS    | -BUS outputted to LC board            |
| J6  |           |         |                                       |
| No. | Interface | Label   | Explanation                           |
| 1   | J6-1      | DCSTART | Switch control signal of SOFTSTART    |
| 2   | J6-2      | FAN_GND | Ground of 12V power supply of the fan |
| 3   | J6-3      | FAN12V  | 12V power supply of the fan           |

### 2.6 Input board (IP-BOARD)

### 2.6.1 Introduction of functions of IP-BOARD

IP-BOARD mainly achieves over-current protection of main power and batter input and sampling of main power, battery and bypass voltage.

### 2.6.2 Schematic circuit and physical map of IP-BOARD

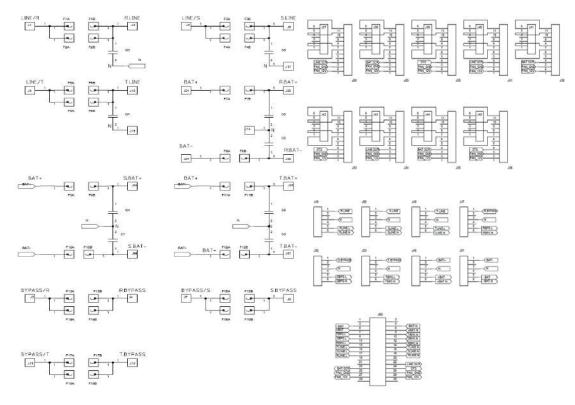



Figure 2.6.1 Schematic Circuit of IP-BOARD

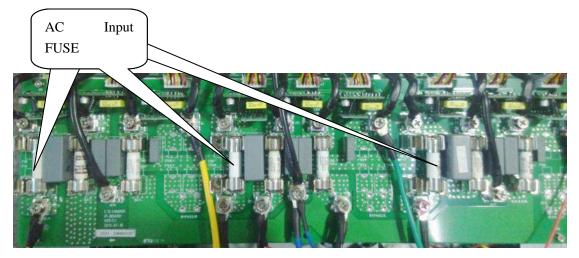



Figure 2.6.2 Physical Map of IP-BOARD for 10KVA Power Module

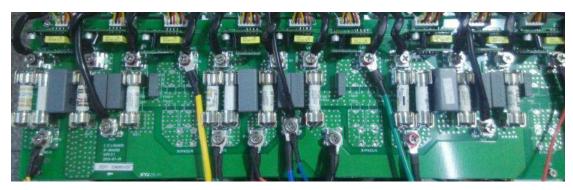



Figure 2.6.3 Physical Map of IP-BOARD for 20KVA and 30KVA Power Module

The difference between IP-BOARD of 10K,20K,and 30K power module,detail below the Chart

| Power module capacity | Number of AC input FUSE per phase |
|-----------------------|-----------------------------------|
| 10KVA                 | 1                                 |
| 20KVA                 | 2                                 |
| 30KVA                 | 2                                 |

Chart 2.6.1 The difference between two types of IP\_Board

### 2.6.3 Explanation for signal interface of IP-BOARD

**J37-J45** (J37, J40 and J43 match with main power SCR of R, S and Phase T of rectifying plate respectively; J39, J42 and J45 match with bypass SCR of R, S and Phase T of bypass SCR module)

| No. | Interface | Label  | Explanation                               |
|-----|-----------|--------|-------------------------------------------|
| 1   | 1         | SCR1/G | The first output positive of SCR driving  |
| 2   | 2         | SCR1/K | The first output negative of SCR driving  |
| 3   | 5         | SCR2/G | The second output positive of SCR driving |
| 4   | 6         | SCR2/K | The second output negative of SCR driving |

J60

| No. | Interface | Label         | Explanation                                 |
|-----|-----------|---------------|---------------------------------------------|
| 1   | J60-3/4   | -BAT;-BAT.N   | Voltage sampling signal of negative battery |
| 2   | J60-5/6   | +BAT;+BAT.N   | Voltage sampling signal of positive battery |
| 3   | J60-7/8   | TBPS.L;TBPS.N | Voltage sampling signal of Phase T bypass   |
| 4   | J60-9/10  | SBPS.L;SBPS.N | Voltage sampling signal of Phase S bypass   |
| 5   | J60-11/12 | RBPS.L;RBPS.N | Voltage sampling signal of Phase R bypass   |

| 6  | J60-13/14 | TLINE.L;TLINE.N | Voltage sampling signal of Phase T main power           |
|----|-----------|-----------------|---------------------------------------------------------|
| 7  | J60-15/16 | SLINE.L;SLINE.N | Voltage sampling signal of Phase S main power           |
| 8  | J60-17/18 | RLINE.L;RLINE.N | Voltage sampling signal of Phase R main power           |
| 9  | J60-22    | LINE.SCR        | Driving control signal of main power SCR driving module |
| 10 | J60-23    | BAT.SCR         | Driving control signal of battery SCR driving module    |
| 11 | J60-24    | STS             | Driving control signal of bypass SCR driving module     |
| 12 | J60-25/26 | FAN_GND         | Ground of 12V power supply of the fan                   |
| 13 | J60-27/28 | FAN_12V         | 12V power supply input of the fan                       |

### 2.7 Rectifier module (RECTIFIER)

### 2.7.1 Introduction of principle of RECTIFIER module

RECTIFIER module is mainly composed by main power SCR which is used to rectify the input main power into DC voltage and battery SCR which is used to control disconnection of battery input.



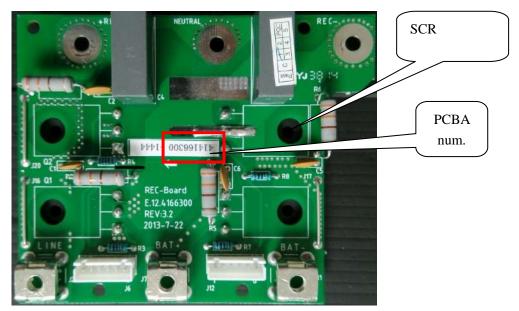
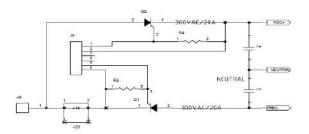




Figure 2.7.1 Physical Map of RECTIFIER Module

| The difference between RECTIFIER of 10K,20K,and 30K power module, detail below the Chart |                            |             |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------|-------------|--|--|--|
| Power module capacity                                                                    | Type of SCR                | PCBA number |  |  |  |
| 10KVA                                                                                    | IR_40TPS12APBP(35A1200V)   | 414166302   |  |  |  |
| 20KVA                                                                                    | CLA 50E 1200HB (50A 1200V) | 414166300   |  |  |  |
| 30KVA                                                                                    | CLA 50E 1200HB (50A 1200V) | 414166300   |  |  |  |



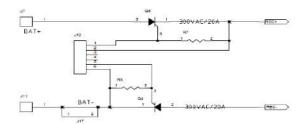



Figure 2.7.2 Schematic Circuit of RECTIFIER Module

| J2  |           |        |                                           |  |
|-----|-----------|--------|-------------------------------------------|--|
| No. | Interface | Label  | Explanation                               |  |
|     |           | LINE   | Input terminal of main power              |  |
| J7  |           |        |                                           |  |
| No. | Interface | Label  | Explanation                               |  |
|     |           | BAT+   | Battery positive                          |  |
| J1  | 1         | ·      |                                           |  |
| No. | Interface | Label  | Explanation                               |  |
|     |           | BAT-   | Battery negative                          |  |
| J6  | /J12      |        |                                           |  |
| No. | Interface | Label  | Explanation                               |  |
| 1   | J6/J12 -1 | SCR1/G | The first output positive of SCR driving  |  |
| 2   | J6/J12 -2 | SCR1/K | The first output negative of SCR driving  |  |
| 3   | J6/J12 -5 | SCR2/G | The second output positive of SCR driving |  |
| 4   | J6/J12 -6 | SCR2/K | The second output negative of SCR driving |  |

### 2.7.3 Explanation for signal interface of RECTIFIER module

### 2.8 Bypass SCR module (BPS-SCR)

### 2.8.1 Introduction of bypass SCR module

Bypass SCR module plays the role of switch control under bypass mode.

2.8.2 Schematic circuit and physical map of bypass SCR module

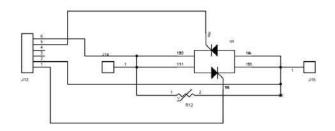



Figure 2.8.1 Schematic Circuit of Bypass SCR Module



Figure 2.8.2 Physical Map of Bypass SCR Module

#### 2.8.3 Explanation for signal interface of bypass SCR module

J13

| No. | Interface | Label  | Explanation                               |
|-----|-----------|--------|-------------------------------------------|
| 1   | J13-1     | SCR1/G | The first output positive of SCR driving  |
| 2   | J13-2     | SCR1/K | The first output negative of SCR driving  |
| 3   | J13-5     | SCR2/G | The second output positive of SCR driving |
| 4   | J13-6     | SCR2/K | The second output negative of SCR driving |
| J14 |           |        |                                           |

| No. | Interface | Label | Explanation                                   |  |
|-----|-----------|-------|-----------------------------------------------|--|
|     |           | BYP   | BYP Input terminal of bypass                  |  |
| J15 |           |       |                                               |  |
| No. | Interface | Label | Explanation                                   |  |
|     |           | BPS   | BPS bypass terminal connected to output board |  |

#### 2.9 Power factor correction module (PFC)

#### 2.9.1 Introduction of circuit principle of PFC

Circuit of power factor correction is composed by PFC inductance and BUS capability in PFC board and LC board.

Working principle of PFC board:

PFC circuit mainly is composed by boost circuit, and the IGBT pipe will be on/off under control of PWM driving. When the IGBT is on, PFC inductance will store the energy, and BUS capability supplies power to backward; when the IGBT is off, the diode is on, induced electromotive force of inductance is in series connection with input rectified voltage to output constant BUS voltage and supply power to BUS capability.

At the same time, DSP inputs voltage and PFC inductance current by sampling, treated by DSP arithmetic circuit, adjusts IGBT pipe to drive PWM wave form so that the wave form of input current is the same with wave form of rectified voltage and the input power factor of UPS is

improved.

# 2.9.2 Schematic circuit and physical map of PFC module

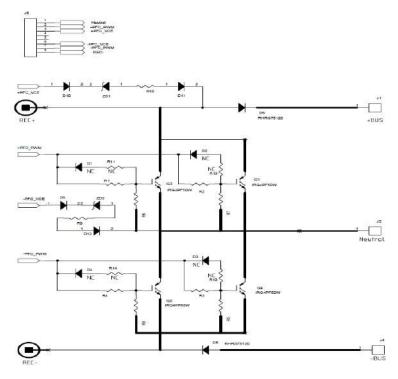



Figure 2.91 Schematic Circuit of PFC Module



Figure 2.9.2 Physical Map of PFC Module for 10KVA Power Module

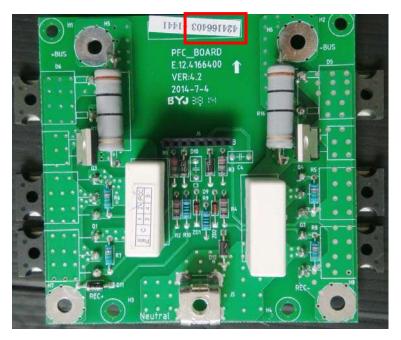



Figure 2.9.3 Physical Map of PFC Module for 30KVA Power Module The difference between the PFC circuit of 10KVA,20KVA,and 30KVA power module

| Power    | Module | The IGBT for PFC             | The   | number | of  | PCBA num. |
|----------|--------|------------------------------|-------|--------|-----|-----------|
| capacity |        |                              | PFC   | IGBT   | per |           |
|          |        |                              | phase |        |     |           |
| 10KVA    |        | IGBT,FGH40T100SMD(1000V      | 2     |        |     | 424166402 |
|          |        | 40A)                         |       |        |     |           |
| 20KVA    |        | IGBT,FGH40T100SMD(1000V      | 4     |        |     | 424166403 |
|          |        | 40A)                         |       |        |     |           |
| 30KVA    |        | IGBT,IKW40N120H3,(1200V,40A) | 4     |        |     | 424166401 |

# 2.9.3 Explanation for signal interface of PFC module

**J6** (matching with J1 of IGBTDR module)

| No. | Interface | Label    | Explanation                                                     |
|-----|-----------|----------|-----------------------------------------------------------------|
| 1   | J6-1      | Neutral  | Reference ground of PWM driving signal of IGBT in positive side |
| 2   | J6-2      | +PFC_PWM | PWM driving signal of IGBT in positive side                     |
| 3   | J6-3      | +PFC_VCE | VCE sampling of IGBT in positive side                           |
| 4   | J6-6      | -PFC_VCE | VCE sampling of IGBT in negative side                           |
| 5   | J6-7      | -PFC_PWM | PWM driving signal of IGBT in negative side                     |
| 6   | J6-8      | REC-     | Reference ground of PWM driving signal of IGBT in               |
|     |           |          | negative side                                                   |

### 2.10 Inverter module (INVERTER)

#### 2.10.1 Introduction of circuit principle of INVERTER

INVERTER module, inverter inductance in LC board and inverter output capability in output board compose the inverter circuit of UPS, it is the half-bridge structure. The upper and lower half-bridge IGBT takes action of on/off under control of PWM driving, filtered by LC, and then the inverter sinusoidal wave output can be obtained.

### 2.10.2 Schematic circuit and physical map of INVERTER module

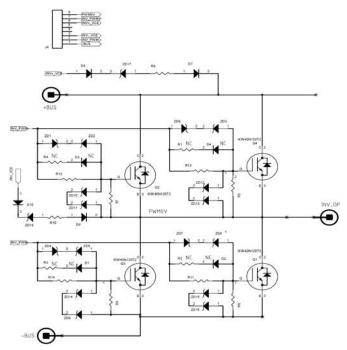



Figure 2.10.1 Schematic Circuit of INVERTER Module

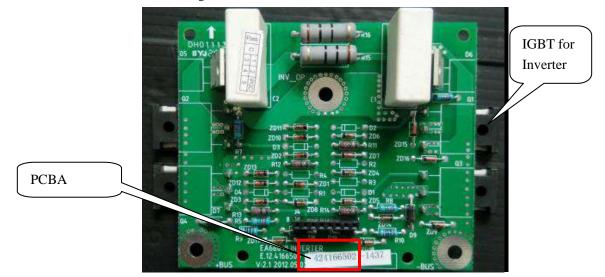



Figure 2.10.2 Physical Map of INVERTER Module for 30KVA Power Module

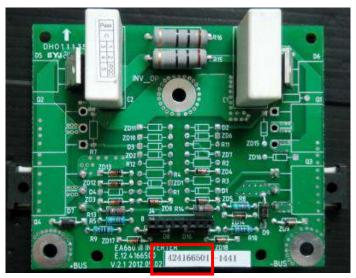



Figure 2.10.3 Physical Map of INVERTER Module for 10KVA Power Module

The difference between the INVERTER circuit of 10KVA,20KVA,and 30KVA power module

| Power    | IGBT for Inverter            | PCBA num. | Quantity per |
|----------|------------------------------|-----------|--------------|
| Module   |                              |           | phase        |
| Capacity |                              |           |              |
| 10KVA    | IGBT,IKW40N120H3,(1200V,40A) | 424166501 | 2PCS         |
| 20KVA    | IGBT,IKW40N120H3,(1200V,40A) | 424166500 | 4PCS         |
| 30KVA    | IGBT,IKW40N120H3,(1200V,40A) | 424166502 | 4PCS         |

### 2.10.3 Explanation for signal interface of INVERTER module

J4 (matching with J1 of IGBTDR module)

| No. | Interface | Label    | Explanation                                       |
|-----|-----------|----------|---------------------------------------------------|
| 1   | J4-1      | -BUS     | Reference ground of PWM driving signal of IGBT in |
|     |           |          | negative side                                     |
| 2   | J4-2      | INV_PWM- | PWM driving signal of IGBT in negative side       |
| 3   | J4-3      | INVVCE   | VCE sampling of IGBT in negative side             |
| 4   | J4-6      | INV+_VCE | VCE sampling of IGBT in positive side             |
| 5   | J4-7      | INV_PWM+ | PWM driving signal of IGBT in positive side       |
| 6   | J4-8      | PWM0V    | Reference ground of PWM driving signal of IGBT in |
|     |           |          | positive side                                     |

#### 2.11 Inductance capability board (LC-BOARD)

#### 2.11.1 Introduction of functions of LC-BOARD

There are PFC, INV inductance, BUS electrolytic capacitor, and Hall sensor in the LC-BOARD, achieving the functions of PFC inductance current, INV inductance current, sampling of BUS voltage and speed adjustment of the fan.

#### 2.11.2 Schematic circuit and physical map of LC-BOARD

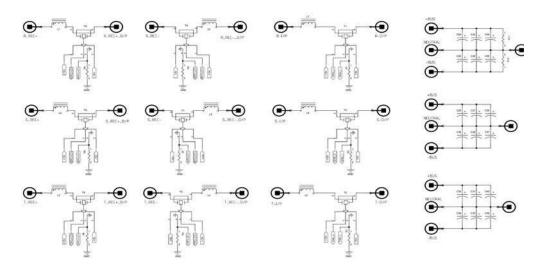



Figure 2.11.1 Schematic Circuit of LC-BOARD

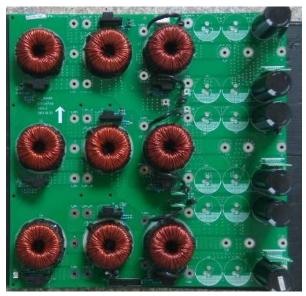



Figure 2.11.2 Physical Map of LC-BOARD for 10KVA Power Module

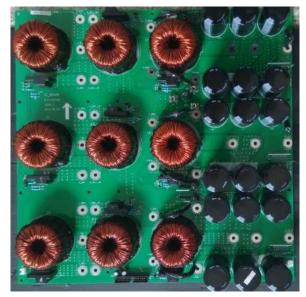



Figure 2.11.2 Physical Map of LC-BOARD for 20KVA and 30KVA Power Module

|       | The number        | Fan drv | PCBA num. |
|-------|-------------------|---------|-----------|
|       | capacity          |         |           |
| 10KVA | 6pcs (450V,820uf) | 3       | 424167103 |
| 20KVA | 18pcs(450V.820uf) | 6       | 424167104 |
| 30KVA | 18pcs(450V,820uf) | 6       | 424167102 |

The difference between the LC-BOARD of 10KVA,20KVA,and 30KVA power module

# 2.11.3 Explanation for signal interface of LC-BOARD

**J38** 

| No. | Interface | Label       | Explanation                          |
|-----|-----------|-------------|--------------------------------------|
| 1   | J38-1/5   |             | ±BUS outlet pin, connected with soft |
|     |           | +BUS; - BUS | start board J5                       |
|     |           | ,           |                                      |

| No. | Interface     | Label             | Explanation                        |
|-----|---------------|-------------------|------------------------------------|
| 1   | J54/J55/J56-1 | FAN12V            | Output 12V power supply of the fan |
| 2   | J54/J55/J56-2 | FAN_1;FAN_2;FAN_3 | Connecting pin of the fan          |
|     |               |                   |                                    |

# J63

| J6  | 3         |                   |                                             |
|-----|-----------|-------------------|---------------------------------------------|
| No. | Interface | Label             | Explanation                                 |
| 1   | J63-1     | GND               | Ground                                      |
| 2   | J63-2     | +15V              | Input +15V DC                               |
| 3   | J63-4     | -15V              | Input -15V DC                               |
| 4   |           |                   | PFC inductance current sampling in negative |
|     | J63-5/6   | TPFC-CT+;TPFC-CT- | side of Phase T                             |
| 5   |           | SPFC-CT+;SPFC-CT- | PFC inductance current sampling in negative |
|     | J63-7/8   |                   | side of Phase S                             |
| 6   |           | RPFC-CT+;RPFC-CT- | PFC inductance current sampling in negative |
|     | J63-9/10  |                   | side of Phase R                             |
| 7   | J63-11/12 |                   | PFC inductance current sampling in positive |
|     |           | TPFC+CT+;TPFC+CT- | side of Phase T                             |
| 8   | J63-13/14 | SPFC+CT+;SPFC+CT- | PFC inductance current sampling in positive |
|     |           |                   | side of Phase S                             |
| 9   | J63-15/16 | RPFC+CT+;RPFC+CT- | PFC inductance current sampling in positive |
|     |           |                   | side of Phase R                             |
| 10  | J63-17/18 | RINV_I+; RINV_I-  | INV current sampling in Phase R             |
| 11  | J63-19/20 | SINV_I+; SINV_I-  | INV current sampling in Phase S             |
| 12  | J63-21/22 | TINV_I+; TINV_I-  | INV current sampling in Phase T             |
| 13  | J63-23/24 | -BUS.V; -BUS.N    | Negative BUS voltage sampling               |
| 14  | J63-25/26 | +BUS.V; +BUS.N    | Positive BUS voltage sampling               |
| 15  | J63-27    | FANDET2           | Sampling signal of fault of the fan 2       |
| 16  | J63-28    | FANSPEED          | Control signal of rotate speed of the fan   |
| 17  | J63-29    | FANDET1           | Sampling signal of fault of the fan 1       |
| 18  | J63-30    | FANDET0           | Sampling signal of fault of the fan 0       |

| No. | Interface | Label   | Explanation                           |
|-----|-----------|---------|---------------------------------------|
| 1   | J64-1     | FAN12V  | Output of 12V power supply of the fan |
| 2   | J64-2     | FAN_GND | Ground of 12V power supply of the fan |

#### 2.12 IGBT connecting plate (IGBT-CONNECTOR)

#### 2.12.1 Introduction of functions of IGBT-CONNECTOR

IGBT-CONNECTOR plays role of connecting the main control panel and IGBT driving module, mainly achieves functions of PWM signal inversion of main control panel, IGBT over-current alarm detection, IGBT driving interlocking of inverter upper and lower half-bridge, and temperature sampling of radiator.

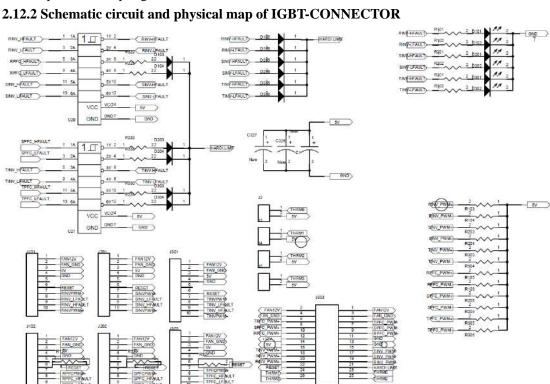



Figure 2.12.1 Schematic Circuit of IGBT-CONNECTOR

| PCBA number |         |  |  |
|-------------|---------|--|--|
| 494166601   |         |  |  |
|             |         |  |  |
|             | HIN ALL |  |  |

Figure 2.12.2 Physical Map of IGBT-CONNECTOR

| J10 | J101/J201/J301 (matching with J2 of IGBTDR module) |                     |                                                                                                          |  |
|-----|----------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------|--|
| No. | Interface                                          | Label               | Explanation                                                                                              |  |
| 1   | J101-1                                             | FAN12V              | Input 12V power supply of the fan                                                                        |  |
| 2   | J101-2                                             | FAN_GND             | Input power supply ground of the fan                                                                     |  |
| 3   | J101-3                                             | 5V                  | Input DC 5V power supply                                                                                 |  |
| 4   | J101-4                                             | GND                 | Input DC 5V corresponding ground                                                                         |  |
| 5   | J101-6                                             | RESET               | Reset pin                                                                                                |  |
| 6   | J101-7                                             | RINVPWM-            | Signal of driving board inputted to IGBT in                                                              |  |
| 7   | J101-8                                             | RINV_LFAULT         | INV negative side of phase R<br>FAULT signal of IGBTDR module in INV<br>negative side of phase R         |  |
| 8   | J101-9                                             | RINV_HFAULT         | FAULT signal of IGBTDR module in INV positive side of phase R                                            |  |
| 9   | J101-10                                            | RINVPWM+            | Signal of driving board outputted to IGBT in INV positive side of phase R                                |  |
| J10 | 02/J202/J302 (match                                | ing with J2 of IGBT | 'DR module)                                                                                              |  |
| No. | Interface                                          | Label               | Explanation                                                                                              |  |
| 1   | J102-1                                             | FAN12V              | 12V power supply of the fan                                                                              |  |
| 2   | J102-2                                             | FAN_GND             | 12V power supply ground of the fan                                                                       |  |
| 3   | J102-3                                             | 5V                  | DC 5V power supply                                                                                       |  |
| 4   | J102-4                                             | GND                 | DC 5V corresponding ground                                                                               |  |
| 5   | J102-6                                             | RESET               | Reset pin                                                                                                |  |
| 6   | J102-7                                             | RPFCPWM+            | Signal outputted to IGBT driving board in PFC positive side of phase R                                   |  |
| 7   | J102-8                                             | RPFC_HFAULT         | FAULT signal of IGBTDR module in PFC positive side of phase R                                            |  |
| 8   | J102-9                                             | RPFC_LFAULT         | FAULT signal of IGBTDR module in PFC negative side of phase R                                            |  |
| 9   | J102-10                                            | RPFCPWM-            | Signal outputted to IGBT driving board in PFC negative side of phase R                                   |  |
| _   | J102-10                                            |                     | FAULT signal of IGBTDR module in<br>negative side of phase R<br>Signal outputted to IGBT driving board i |  |

### 2.12.3 Explanation for signal interface of IGBT-CONNECTOR J101/J201/J301 (matching with J2 of IGBTDR module)

### J303

| 3505 |            |            |                                           |
|------|------------|------------|-------------------------------------------|
| No.  | Interface  | Label      | Explanation                               |
| 1    | J303-1/2   | FAN12V     | Input 12V power supply of the fan         |
| 2    | J303-3/4   | FAN_GND    | Input 12V power supply ground of the fan  |
|      |            | TPFC_PWM-; | Pulse signal controlling PFC IGBT driving |
| 3    | J303-5/6   | TPFC_PWM+  | module in phase T                         |
|      |            | SPFC_PWM-; | Pulse signal controlling PFC IGBT driving |
| 4    | J303-7/8   | SPFC_PWM+  | module in phase S                         |
|      |            | RPFC_PWM-; | Pulse signal controlling PFC IGBT driving |
| 5    | J303-9/10  | RPFC_PWM+  | module in phase R                         |
| 6    | J303-11/13 | GND        | Corresponding ground of DC 12V and 5V     |

| 7  | J303-12          | 12V           | Input DC 12V power supply                 |
|----|------------------|---------------|-------------------------------------------|
| 8  | J303-14          | 5V            | Input DC 5V power supply                  |
|    |                  | TINV_PWM-;    | Pulse signal controlling INV IGBT driving |
| 9  | J303-15/16       | TINV_PWM+     | module in phase T                         |
|    |                  | SINV_PWM-;    | Pulse signal controlling INV IGBT driving |
| 10 | J303-17/18       | SINV_PWM+     | module in phase S                         |
|    |                  | RINV_PWM-;    | Pulse signal controlling INV IGBT driving |
| 11 | J303-19/20       | RINV_PWM+     | module in phase R                         |
| 12 | J303-21          | HARDI.LIMIT   | FAULT signal of IGBTDR module             |
| 13 | J303-22          | RESET         | Reset control pin of IGBTDR module        |
|    |                  | THRM0; THRM1; |                                           |
| 14 | J303-23/24/25/26 | THRM2; THRM3  | Temperature sampling signal               |

#### J2/J3/J4/J5

| No. | Interface           | Label         | Explanation                 |
|-----|---------------------|---------------|-----------------------------|
| 1   | J2-1/J3-1/J4-1/J5-1 | THRM0; THRM1; | Temperature sampling signal |
|     |                     | THRM2; THRM3  |                             |
| 2   | J2/J3/J4/J5-2       | 5V            | DC 5V power supply          |

### 2.13 Output board (OP-BOARD)

### 2.13.1 Introduction of functions of OP-BOARD

OP-BOARD mainly achieves sampling of output voltage current and inverter voltage as well as inverter voltage DC component and switch control of inverter output.

### 2.13.2 Schematic circuit and physical map of OP-BOARD

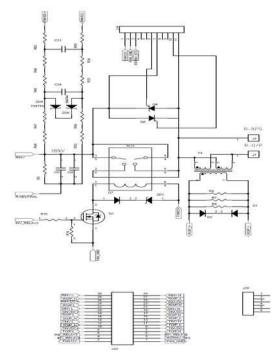



Figure 2.13.1 Schematic Circuit of OP-BOARD




Figure 2.13.2 Physical Map of OP-BOARD for 30KVA Power Module

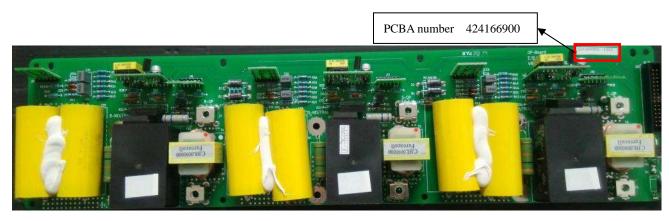



Figure 2.13.3 Physical Map of OP-BOARD for 10KVA and 20KVA Power Module

| J2  | 2         |                 |                                                    |
|-----|-----------|-----------------|----------------------------------------------------|
| No. | Interface | Label           | Explanation                                        |
| 1   | J22-1     | FAN_GND         | 12V power supply ground of the fan                 |
| 2   | J22-2     | FAN_12V         | 12V power supply input of the fan                  |
| 3   | J22-3     |                 | Control signal of SCR driving module of inverter   |
|     |           | RSTINV_STS      | output                                             |
| 4   | J22-4     | INV_RELAY4      | Control signal of inverter relay switch in phase T |
| 5   | J22-5     | INV_RELAY2      | Control signal of inverter relay switch in phase R |
| 6   | J22-6     | INV_RELAY3      | Control signal of inverter relay switch in phase S |
| 7   | J22-7/8   | TO/P.N;TO/P.L   | Output voltage sampling in phase T                 |
| 8   | J22-9/10  | TINVDC-;TINVD   | Inverter DC component sampling in phase T          |
|     |           | C+              |                                                    |
| 9   | J22-11/12 | TO/P_I-;TO/P_I+ | Output current sampling in phase T                 |
| 10  | J22-13/14 | TINV.N;TINV.L   | Inverter voltage sampling in phase T               |
| 11  | J22-15/16 | SO/P_I-;SO/P_I+ | Output current sampling in phase S                 |
| 12  | J22-17/18 | SO/P.N;SO/P.L   | Output voltage sampling in phase S                 |
| 13  | J22-19/20 | SINVDC-;SINVD   |                                                    |
|     |           | C+              | Inverter DC component sampling in phase S          |

# 2.13.3 Explanation for signal interface of OP-BOARD

J22

| 14 | J22-21/22 | SINV.N;SINV.L   | Inverter voltage sampling in phase S      |
|----|-----------|-----------------|-------------------------------------------|
| 15 | J22-23/24 | RO/P.N;RO/P.L   | Output voltage sampling in phase R        |
| 16 | J22-25/26 | RINVDC-;RINVD   | Inverter DC component sampling in phase R |
|    |           | C+              |                                           |
| 17 | J22-27/28 | RO/P_I-;RO/P_I+ | Output current sampling in phase R        |
| 18 | J22-29/30 | RINV.N;RINV.L   | Inverter voltage sampling in phase S      |

# 2.14 Output filter board (OP\_EMI)

### 2.14.1 Schematic circuit and physical map of output filter board

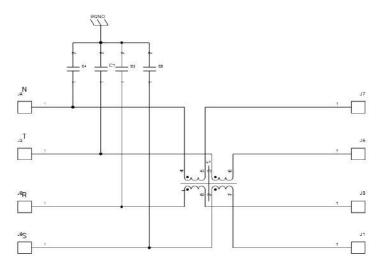
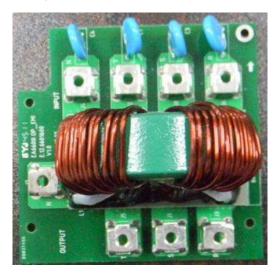
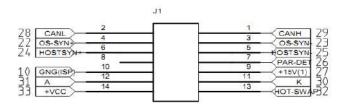



Figure 2.14.1 Schematic Circuit of OP\_EMI





Figure 2.14.2 Physical Map of OP\_EMI

# 2.14.2 Explanation for signal interface of output filter board

| No. | Interface   | Label          | Explanation                    |  |  |
|-----|-------------|----------------|--------------------------------|--|--|
| 1   | J6/J8/J2/J4 | INPUT R/S/T/N  | Output R/S/T/N of filter board |  |  |
| 2   | J3/J1/J5/J7 | OUTPUT R/S/T/N | Output R/S/T/N of filter board |  |  |

# 2.15 Power socket connecting plate (IN\_CON\_Z)

### 2.15.1 Schematic circuit and physical map of IN\_CON\_Z



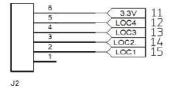



Figure 2.15.1 Schematic Circuit of IN\_CON\_Z



Figure 2.15.2 Physical Map of IN\_CON\_Z

# 2.15.2 Explanation of signal interface of IN\_CON\_Z

| J1  |           |                    |                                         |
|-----|-----------|--------------------|-----------------------------------------|
| No. | Interface | Label              | Explanation                             |
| 1   | J1-1/2    | CANH;CANL          | CAN communication signal                |
| 2   | J1-3/4    | OS-SYN-; OS-SYN+   | Synchronizing signal                    |
| 3   | J1-5/6    | HOSTSYN-; HOSTSYN+ | Synchronizing pulse signal              |
| 4   | J1-7      |                    | Sampling signal of disconnected line of |
|     |           | PAR-DET            | parallel machine                        |
| 5   | J1-9      | +15V(I)            | Secondary side DC power supply +15V     |
| 6   | J1-10     | GNG(ISP)           | Secondary side ground                   |
| 7   | J1-11     | K                  | Corresponding ground of POWER_ON        |
| 8   | J1-12     | А                  | POWER_ON                                |
| 9   | J1-13     | HOT-SWAP           | Hot-plugging signal                     |
| 10  | J1-14     | +VCC               | Secondary side power supply             |

| J2  |           |       |             |
|-----|-----------|-------|-------------|
| No. | Interface | Label | Explanation |

| 1 | J2-2/3/4/5 | LOC1; LOC2; LOC3; LOC4 | Physical address sampling signal |
|---|------------|------------------------|----------------------------------|
| 2 | J2-6       | 3.3V                   | DC 3.3V power supply             |

# 2.16 Power socket connecting plate (IN\_CON\_T)

# 2.16.1 Schematic circuit and physical map of IN\_CON\_T

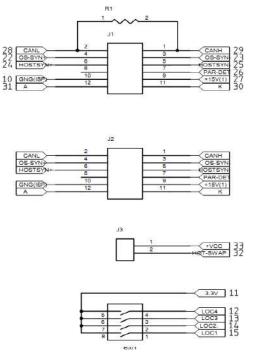



Figure 2.16.1 Schematic Circuit of IN\_CON\_T

| J1/ | 'J2       |                    |                                         |
|-----|-----------|--------------------|-----------------------------------------|
| No. | Interface | Label              | Explanation                             |
| 1   | J1-1/2    | CANH;CANL          | CAN communication signal                |
| 2   | J1-3/4    | OS-SYN-; OS-SYN+   | Synchronizing signal                    |
| 3   | J1-5/6    | HOSTSYN-; HOSTSYN+ | Synchronizing pulse signal              |
| 4   | J1-7      |                    | Sampling signal of disconnected line of |
|     |           | PAR-DET            | parallel machine                        |
| 5   | J1-9      | +15V(I)            | Secondary side DC power supply +15V     |
| 6   | J1-10     | GNG(ISP)           | Secondary side ground                   |
| 7   | J1-11     | K                  | Corresponding ground of POWER_ON        |
| 8   | J1-12     | Α                  | POWER_ON                                |
| J3  |           |                    |                                         |
| 1   | J3-1      | +VCC               | Secondary side power supply             |
| 2   | J3-2      | HOT-SWAP           | Hot-plugging signal                     |

# 2.16.2 Explanation for signal interface of IN\_CON\_T

#### 2.17 Lamp Panel (POWER\_MODULE LED)

#### 2.17.1 Introduction of functions of lamp panel

Lamp panel in front panel mainly achieves the functions of working power supply set indication, start status indication and fault warning of the module.

2.17.2 Schematic circuit and physical map of lamp panel

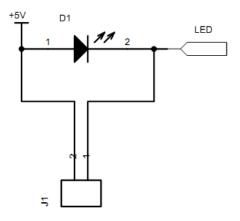



Figure 2.17.1 Schematic Circuit of Lamp Panel



Figure 2.17.2 Physical Map of Lamp Panel

#### 2.17.3 Explanation for signal interface of lamp panel

J1

| No. | Interface | Label | Explanation                                |  |
|-----|-----------|-------|--------------------------------------------|--|
| 1   | J1-1      | LED   | Control signal of on/off of LED lamp       |  |
| 2   | J1-2      | +5V   | +5V voltage supplied by main control panel |  |

#### 2.18 Control connecting plate (CNTL-CONNECTOR)

### 2.18.1 Introduction of functions of CNTL-CONNECTOR

CNTL-CONNECTOR mainly achieves the connection of signal interfaces of control panel, input and output board, power supply board, LC board, IGBT connecting plate, etc.

2.18.2 Schematic circuit and physical map of CNTL-CONNECTOR

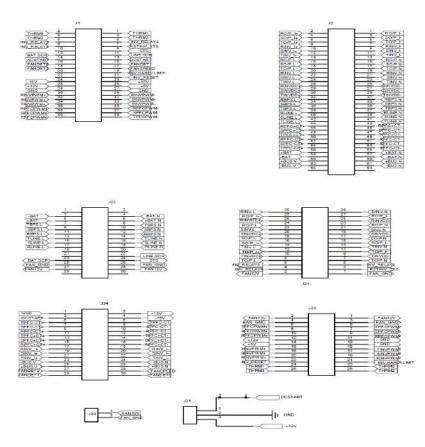



Figure 2.18.1 Schematic Circuit of CNTL-CONNECTOR



Figure 2.18.2 Physical Map of CNTL-CONNECTOR

| 2.18.3 | Explanation | for signal | interface of | CNTL | -CONNECTOR |
|--------|-------------|------------|--------------|------|------------|
|--------|-------------|------------|--------------|------|------------|

| т   | -           |                  |                                            |
|-----|-------------|------------------|--------------------------------------------|
| J   | 1           |                  |                                            |
| No. | Interface   | Label            | Explanation                                |
|     |             | THRM1;THRM0;     | Temperature sampling signal                |
| 1   | J1-1/2/3/4  | THRM3;THRM2      |                                            |
|     |             | INV_RELAY3       | Control signal of inverter relay switch in |
| 2   | J1-5        |                  | phase S                                    |
|     |             | INV_RELAY2       | Control signal of inverter relay switch in |
| 3   | J1-6        |                  | phase R                                    |
|     |             |                  | Control signal of SCR driving signal of    |
| 4   | J1-7        | RSTINV_STS       | inverter output                            |
|     |             |                  | Control signal of inverter relay switch in |
| 5   | J1-8        | INV_RELAY4       | phase T                                    |
| 6   | J1-9        | STS              | Control signal of bypass SCR               |
| 7   | J1-11       | LINESCR          | SCR control signal of main power           |
| 8   | J1-12       | BATSCR           | SCR control signal of battery              |
| 9   | J1-13       | DCSTART          | Switch control signal of SOFTSTART         |
| 10  | J1-15/16/18 | FANDET1;FANDET0; | Sampling signal of fault of the fan        |

|     |                | FANDET2            |                                               |                                            |  |
|-----|----------------|--------------------|-----------------------------------------------|--------------------------------------------|--|
| 11  | J1-17          | FANSPEED           |                                               | Control signal of rotate speed of the fan  |  |
| 12  | J1-19          | INV.HARDI.LIMIT    |                                               | FAULT signal of IGBTDR module              |  |
| 12  | J1-21          | INV_RESET          |                                               | Reset pin of IGBTDR module                 |  |
| 13  | J1-23/24/25/26 | +15V;-15V; 5V ;12V |                                               | DC power supply                            |  |
| 15  | J1-27/28       | GND                |                                               | Ground                                     |  |
| 15  | 012//20        | RINVPWM-;          |                                               | Pulse signal controlling INV IGBTDR        |  |
| 16  | J1-29/30       | RINVPWM+           |                                               | module in phase R                          |  |
|     |                |                    |                                               | Pulse signal controlling INV IGBTDR        |  |
| 17  | J1-31/32       | SINVPWM-; SINVPV   | VM+                                           | module in phase S                          |  |
|     |                |                    |                                               | Pulse signal controlling INV IGBTDR        |  |
| 18  | J1-33/34       | TINVPWM-; TINVP    | WM+                                           | module in phase T                          |  |
|     | J1-35/36       | RPFCPWM-;          |                                               | Pulse signal controlling PFC IGBTDR        |  |
| 19  |                | RPFCPWM+           |                                               | module in phase R                          |  |
|     | J1-37/38       |                    |                                               | Pulse signal controlling PFC IGBTDR        |  |
| 20  |                | SPFCPWM-; SPFCPV   | VM+                                           | module in phase S                          |  |
|     | J1-39/40       |                    |                                               | Pulse signal controlling PFC IGBTDR        |  |
| 21  |                | TPFCPWM-; TPFCP    | WM+                                           | module in phase T                          |  |
| J   | 12             |                    | 1                                             |                                            |  |
| No. | Interface      | Label              | Expl                                          | lanation                                   |  |
| 1   | J2-1/2         | RO/P_I-;RO/P_I+    | Outp                                          | out current sampling in phase R            |  |
| 2   | J2-3/4         | SO/P_I-;SO/P_I+    | Outp                                          | out current sampling in phase S            |  |
| 3   | J2-5/6         | TO/P_I-;TO/P_I+    | Outp                                          | out current sampling in phase T            |  |
| 4   | J2-7/8         | RINV_I-; RINV_I+   | INV                                           | current sampling in phase R                |  |
| 5   | J2-9/10        | SINV_I-; SINV_I+   | INV                                           | current sampling in phase S                |  |
| 6   | J2-11/12       | TINV_I-; TINV_I+   | INV                                           | current sampling in phase T                |  |
| 7   | J2-13/14       | RO/P.N;RO/P.L      | Outp                                          | ut voltage sampling in phase R             |  |
| 8   | J2-15/16       | SO/P.N;SO/P.L      | Outp                                          | out voltage sampling in phase S            |  |
| 9   | J2-17/18       | TO/P.N;TO/P.L      | Outp                                          | out voltage sampling in phase T            |  |
| 10  | J2-19/20       | RINV.N;RINV.L      | Inver                                         | rter voltage sampling in phase R           |  |
| 11  | J2-21/22       | SINV.N;SINV.L      | Inver                                         | rter voltage sampling in phase S           |  |
| 12  | J2-23/24       | TINV.N;TINV.L      | Inver                                         | rter voltage sampling in phase T           |  |
| 13  | J2-25/26       | RINVDC-;RINVDC+    | Inver                                         | rter DC component sampling in phase R      |  |
| 14  | J2-27/28       | SINVDC-;SINVDC+    | Inverter DC component sampling in phase S     |                                            |  |
| 15  | J2-29/30       | TINVDC-;TINVDC+    | Inver                                         | rter DC component sampling in phase T      |  |
| 16  | J2-31/32       | RBPS.N;RBPS.L      | Bypass voltage sampling signal in phase R     |                                            |  |
| 17  | J2-33/34       | SBPS.N;SBPS.L      | Вура                                          | ass voltage sampling signal in phase S     |  |
| 18  | J2-35/36       | TBPS.N;TBPS.L      | Вура                                          | ass voltage sampling signal in phase T     |  |
| 19  | J2-37/38       | RLINE.N;RLINE.L    | Mair                                          | n power voltage sampling signal in phase R |  |
| 20  | J2-39/40       | SLINE.N;SLINE.L    | Main                                          | n power voltage sampling signal in phase S |  |
| 21  | J2-41/42       | TLINE.N;TLINE.L    | Main power voltage sampling signal in phase T |                                            |  |
| 22  | J2-43/44       | RPFC+CT-;RPFC+CT   | PFC inductance current sampling in positive   |                                            |  |

|         |                 |          | +                        |              |                                | side of Phase R                             |  |  |
|---------|-----------------|----------|--------------------------|--------------|--------------------------------|---------------------------------------------|--|--|
|         |                 |          | SPFC+CT-;SPFC+CT         |              | +CT                            | PFC inductance current sampling in positive |  |  |
| 23      | J2-45/4         | 6        | +                        |              |                                | side of Phase S                             |  |  |
|         |                 |          | TP                       | FC+CT-;TPFC  | +CT                            | PFC inductance current sampling in positive |  |  |
| 24      | J2-47/4         | .8       | +                        |              |                                | side of Phase T                             |  |  |
|         |                 |          | RP                       | FC-CT-;RPFC- | -CT+                           | PFC inductance current sampling in negative |  |  |
| 25      | J2-49/5         | 0        |                          |              |                                | side of Phase R                             |  |  |
|         |                 |          | SP                       | FC-CT-;SPFC- | CT+                            | PFC inductance current sampling in negative |  |  |
| 26      | J2-51/5         | 2        |                          |              |                                | side of Phase S                             |  |  |
|         |                 |          |                          |              |                                | PFC inductance current sampling in negative |  |  |
| 27      | J2-53/5         | 4        | TP                       | FC-CT-;TPFC- | CT+                            | side of Phase T                             |  |  |
| 28      | J2-55/5         | 6        | +B                       | AT.N;+BAT    |                                | Voltage sampling of positive battery        |  |  |
| 29      | J2-57/5         | 8        | -B/                      | AT.N;-BAT    |                                | Voltage sampling of negative battery        |  |  |
| 30      | J2-59/6         | 0        | +B                       | US.N;+BUS.V  | r                              | Voltage sampling of positive BUS            |  |  |
| 31      | J2-61/6         | 52       | -BI                      | JS.N;-BUS.V  |                                | Voltage sampling of negative BUS            |  |  |
| J       | 20              |          |                          |              | r                              |                                             |  |  |
| No.     |                 | Interfac | ce                       | Label        | Expl                           | anation                                     |  |  |
| 1       |                 | J20-1    |                          | FAN12V       | Input                          | t 12V power supply of the fan               |  |  |
| 2       |                 | J20-2    |                          | FAN_GND      | Input                          | t 12V power supply ground of the fan        |  |  |
| J       | 25              |          |                          |              |                                |                                             |  |  |
| No.     |                 | Interfac | ce                       | Label        | Expla                          | anation                                     |  |  |
| 1       |                 | J25-1    |                          | DCSTART      | Swite                          | ch control signal of SOFTSTART              |  |  |
| 2       |                 | J25-2    |                          | GND          | Corresponding ground of DC 12V |                                             |  |  |
| 3       |                 | J25-3    |                          | +12V         | Input                          | Input DC 12V power supply                   |  |  |
| Interfa | ace match       | ning     |                          |              |                                |                                             |  |  |
| No.     | No. Interface I |          | Expla                    | anation      |                                |                                             |  |  |
| 1       | J21 Mate        |          |                          |              | Mate                           | hing output board J22                       |  |  |
| 2       |                 | J22      | Matching input board J60 |              |                                | hing input board J60                        |  |  |
| 3       |                 | J23      |                          |              | Matc                           | hing connecting plate J303 of IGBT          |  |  |
| 4       |                 |          |                          |              | hing J63 of LC board           |                                             |  |  |

#### 2.19 Control panel (CNTL)

### 2.19.1 Introduction of functions of CNTL

Transfer the analog signal received by connector of control panel into control signal output to control the UPS to work according to requirements under different conditions. 10-30KVA power module shared a control panel, and can set by a jumper in the CN4.

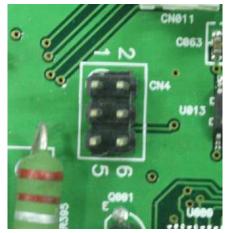



Figure2.19.1

| CN4   | 1,2 pin       | 3, 4pin       | 5,6pin        |
|-------|---------------|---------------|---------------|
| 10KVA | Short connect |               |               |
| 15KVA |               | Short connect |               |
| 20KVA |               |               |               |
| 30KVA |               |               | Short connect |

# 2.19.2 Physical map of CNTL



Figure 2.19.2 Physical Map of CNTL

# 2.19.3 Explanation for signal interface of CNTL

| Interface matching |           |                                           |
|--------------------|-----------|-------------------------------------------|
| No.                | Interface | Explanation                               |
| 1                  | CN2       | Matching control connecting plate J1      |
| 2                  | CN5       | Matching control connecting plate J2      |
| 3                  | CN803     | Matching SPS J16                          |
| 4                  | CN007     | Matching IN_CON_Z board J1                |
| 5                  | CN005     | Matching IN_CON_Z board J2                |
| 6                  | CN012     | Matching LED lamp panel J1 in front panel |

CN002

| CN002-1/2/ | IPOMSRXD;IPOMSTXD;0 | GN Communication interface of serial port of singl                                                                                                                                                             |
|------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3          | D-S                 | module                                                                                                                                                                                                         |
| CN011      |                     |                                                                                                                                                                                                                |
| CN011-1/2  | N; SW               | Connect with button of power on of single module<br>pressing it for 5s can power on the machine; ir<br>addition, it needs to short-connect these pins to build<br>the working power supply under battery mode. |

Classification of signal

| Classification | Signal Name                     | Detail Signal     |
|----------------|---------------------------------|-------------------|
|                |                                 | RO/P_I-;RO/P_I+   |
|                | Output load current             | SO/P_I-;SO/P_I+   |
|                |                                 | TO/P_I-;TO/P_I+   |
|                |                                 | RINV_I-; RINV_I+  |
|                | INV inductance                  | SINV_I-; SINV_I+  |
|                | current                         | TINV_I-; TINV_I+  |
|                |                                 | RO/P.N;RO/P.L     |
|                | Output load voltage             | SO/P.N;SO/P.L     |
|                |                                 | TO/P.N;TO/P.L     |
|                |                                 | RINV.N;RINV.L     |
|                | Output INV voltage              | SINV.N;SINV.L     |
|                |                                 | TINV.N;TINV.L     |
|                |                                 | RINVDC-;RINVDC+   |
|                | INV VDC                         | SINVDC-;SINVDC+   |
|                |                                 | TINVDC-;TINVDC+   |
|                | BUS voltage                     | +BUS.N;+BUS       |
| Analog signal  |                                 | -BUS.N;-BUS       |
|                | UPS input main<br>power voltage | RLINE.N;RLINE.L   |
|                |                                 | SLINE.N;SLINE.L   |
|                |                                 | TLINE.N;TLINE.L   |
|                |                                 | RBPS.N;RBPS.L     |
|                | Bypass voltage                  | SBPS.N;SBPS.L     |
|                |                                 | TBPS.N;TBPS.L     |
|                |                                 | RPFC-CT+;RPFC-CT- |
|                |                                 | SPFC-CT+;SPFC-CT- |
|                | PFC inductance                  | TPFC-CT+;TPFC-CT- |
|                | current                         | RPFC+CT+;RPFC+CT- |
|                | Γ                               | SPFC+CT+;SPFC+CT- |
|                |                                 | TPFC+CT+;TPFC+CT- |
|                | Innut hotte 14                  | +BAT.N;+BAT       |
|                | Input battery voltage           | -BAT.N;-BAT       |

|  | Temperature sampling signal | THRM0; THRM1; THRM2; THRM3 |
|--|-----------------------------|----------------------------|
|  |                             |                            |

| Classification | Signal Name                                              | Detail Signal                   |  |
|----------------|----------------------------------------------------------|---------------------------------|--|
|                |                                                          | RINVPWM-; RINVPWM+              |  |
|                | INV PWM                                                  | SINVPWM-; SINVPWM+              |  |
|                | ĺ                                                        | TINVPWM-; TINVPWM+              |  |
|                |                                                          | RPFCPWM-; RPFCPWM+              |  |
|                | PFC PWM                                                  | SPFCPWM-; SPFCPWM+              |  |
|                |                                                          | TPFCPWM-; TPFCPWM+              |  |
|                | Control signal of output<br>RELAY                        | INVRELAY2; INVRELAY3; INVRELAY4 |  |
|                | SHUNTDONW signal                                         | SD                              |  |
|                | Signal of working power<br>supply set                    | SW                              |  |
|                | Power signal                                             | SW_ON                           |  |
|                | Sampling signal of physical address                      | LOC1; LOC2; LOC3; LOC4          |  |
|                | Hot-plugging signal                                      | HOT-SWAP                        |  |
|                | Synchronizing signal                                     | OS-SYN-; OS-SYN+                |  |
| Control        | Synchronizing pulse signal                               | HOSTSYN-; HOSTSYN+              |  |
|                | CAN communication signal                                 | CANH;CANL                       |  |
| signal         | SCR signal of switching of                               | LINESCR                         |  |
|                | main power and battery                                   | BATSCR                          |  |
|                | Control signal of rotate speed<br>of the fan             | FANSPEED                        |  |
|                | Detection signal of condition<br>of the fan              | FANDET0; FANDET1; FANDET2       |  |
|                | EPO signal                                               | EPO                             |  |
|                | Control signal of BUS soft<br>start                      | DCSTART                         |  |
|                | Communication signal of serial port                      | IPOMSRXD;IPOMSTXD               |  |
|                | LED signal in front of UPS<br>module                     | LED                             |  |
|                | Sampling signal of disconnected line of parallel machine | PAR-DET                         |  |
|                | BYPASS signal                                            | STS                             |  |

| Classification          | Signal Name               | Detail Signal      |
|-------------------------|---------------------------|--------------------|
| Power supply and ground | Primary side power supply | 12V, 15V, -15V, 5V |

| Primary side ground         | GND           |
|-----------------------------|---------------|
| Secondary side power supply | +VCC、+15V (I) |
| Secondary side ground       | GNG(ISP)      |

## 3. Principle of Charger module

### 3.1 The introduction of charger module

### **3.1.1** The introduction of charger

The charger module is mainly composed by charger BUCK module as shown at Figure3.1.1. It can reduce the inputted  $\pm$ BUS voltage to targeted voltage value which can be adjusted by voltage of 16-20 pieces of batteries to supply power for two groups of batteries respectively. It can provide the battery groups the equalized voltage of 14.25V/pcs and the float voltage of 13.35V/pcs. Single charger can provide the maximum 12A charging current, which is settable from 1 to 12A. Double charger can provide the maximum 24A charging current, which is settable from 1-24A.

### 3.1.2 Schematic circuit of CHGR\_PSDR and dial switch for battery

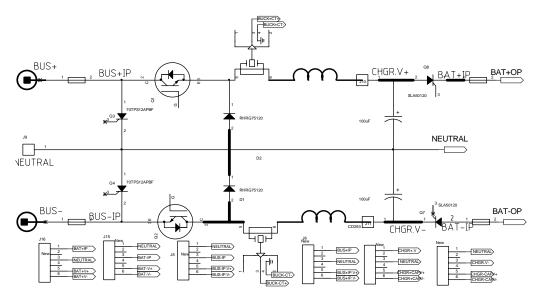



Figure 3.1.1 Schematic Circuit of CHGR\_PSDR

| Batteries | Equalized Voltage(V) | Float Voltage(V) |
|-----------|----------------------|------------------|
| 16        | 228                  | 213.6            |
| 17        | 242.2                | 227              |
| 18        | 256.5                | 240.3            |
| 19        | 270.7                | 253.6            |
| 20        | 285                  | 267              |

Chart 3.1.1 Charger output for different battery groups

| 1 | 2                               | 3                                 | 4                                                                                                                 |
|---|---------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|
|   |                                 |                                   |                                                                                                                   |
| 0 | 0                               | 0                                 | 0                                                                                                                 |
| 1 | 0                               | 0                                 | 0                                                                                                                 |
| 1 | 1                               | 0                                 | 0                                                                                                                 |
| 1 | 1                               | 1                                 | 0                                                                                                                 |
| 1 | 1                               | 1                                 | 1                                                                                                                 |
|   | 1<br>0<br>1<br>1<br>1<br>1<br>1 | 1 2   0 0   1 0   1 1   1 1   1 1 | 1     2     3       0     0     0       1     0     0       1     1     0       1     1     1       1     1     1 |



Chart3.1.2 Dial switch of battery (ON=1,OFF=0)

#### 3.2 Auxiliary power supply module (SPS)

### 3.2.1 The introduction of SPS module

Structure of main circuit of SPS is the structure of FLYBACK transformer. After pressing button of power on after the main power is supplied under main power mode or battery mode, the IC3845 will build a working power supply and start to work, and the driving output pin will output PWM wave form to drive the MOS pipe. When MOS pipe is on, original edge of transformer will store the energy and there is no output for the secondary edge; when MOS pipe is off, energy of transformer will be transferred to all circuits of secondary edge to produce  $\pm 15V$ ,  $\pm 12V$ ,  $\pm 5V$  and FAN12V power supply to supply needed working power supply for the charger module.

3.2.2 Schematic circuit and physical map of SPS

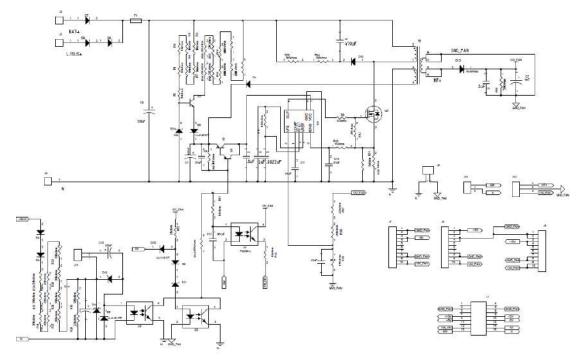



Figure 3.2.1 Schematic Circuit of SPS of Charger Module

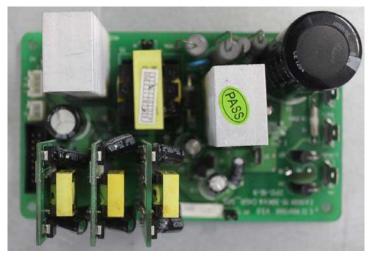



Figure 3.2.2 Physical Map of SPS 3.2.3 Explanation for signal interface of SPS of Charger Module

| NO. | Interface | Label   | Explanation                              | Notes   |
|-----|-----------|---------|------------------------------------------|---------|
| J3  | J3        | BAT+    | Supply positive<br>voltage of battery to | Input   |
|     |           |         | +BUS                                     |         |
| J2  | J2        | L/+BUS  | main power input                         |         |
| J4  | J4        | N       | N cable of main                          |         |
|     |           |         | power input                              |         |
| J10 | 1         | SW      | Control signal of                        | Control |
|     |           |         | SPS start                                |         |
|     | 2         | Ν       | N line                                   |         |
| J12 | 1         | HF+     | HF+ High frequency                       | Output  |
|     |           |         | pulse signal                             | signal  |
|     | 2         | GND_FAN | Output ground used                       |         |
|     |           |         | to supply power the                      |         |
|     |           |         | fan                                      |         |
|     | 3         | 12V_FAN | Output 12V DC                            |         |
|     |           |         | used to supply                           |         |
|     |           |         | power to the fan                         |         |
| J1  | 3/4       | GND_FAN | Output ground used                       |         |
|     |           |         | to supply power the                      |         |
|     |           |         | fan                                      |         |
|     | 7         | +15V    | DC +15V                                  |         |
|     | 8         | -15V    | DC -15V                                  |         |
|     | 9/10      | +5V     | DC +5V                                   |         |
|     | 13        | SW_ON   | Power signal (used                       |         |
|     |           |         | for single module                        |         |
|     |           |         | debugging)                               |         |
|     | 14        | SD      | SPS can be stopped                       |         |
|     |           |         | by this signal                           |         |

| 15 | SW | SW signal |
|----|----|-----------|
| 16 | Ν  | N line    |

## 3.3 CHGR\_CNTL

## 3.3.1 Introduction of the function of CHGR\_ CNTL

Transfer the analog signal received into control signal output to control the Charger to work according to requirements under different conditions. And communicate with power module and monitor module.

## 3.3.2 Physical map of CHGR\_ CNTL



Figure 3.3.1 Physical map of CHGR\_CNTL

## 3.3.3 Explanation for signal interface of CHGR\_ CNTL

| Interface n | natching  |                                                 |
|-------------|-----------|-------------------------------------------------|
| NO.         | Interface | Explanation                                     |
| 1           | CN802     | Matching CHGR_PSDR J49                          |
| 2           | CN008     | Matching Power module J6                        |
| 3           | CN2       | Matching RS232 CN1                              |
| 4           | CN3       | Matching INTERFAC J18 or J19                    |
| 5           | CN5       | Matching CHGR_PSDR CN5                          |
| 6           | CN11      | Matching CHGR_PSDR CN11                         |
| 7           | CN4       | No connect                                      |
| 8           | CN801     | No connect, start the charger manually by short |
|             |           | CN801 for 3s                                    |
| 9           | CN800     | No connect, connect to +5V power when download  |
|             |           | program                                         |

## Interface matching

CN802:

| NO.   | Interface | Label  | Explanation | Notes |
|-------|-----------|--------|-------------|-------|
| CN802 | 1         | +VCC3  | +12V        |       |
|       | 2         | GND-S3 | Ground      |       |

CN008:

| NO.   | Interface | Label       | Explanation | Notes        |
|-------|-----------|-------------|-------------|--------------|
| CN008 | 1         | RESERVEDIO1 | Reserved    |              |
|       | 2         | RESERVEDIO2 | Reserved    |              |
|       | 3         | GND_12V     | Ground      | From CNTL of |

|            | 4                 |      | +12V                | +12 | 2V               | Power Module |
|------------|-------------------|------|---------------------|-----|------------------|--------------|
|            | 6                 |      | CHGON               | Ch  | arger on/off     | Low level    |
|            |                   |      |                     | sig | nal              | effective    |
|            | 7                 |      | NCHGVOLT            | Co  | ntrol signal for | Low level    |
|            |                   |      |                     | neg | ative buck       | effective    |
|            | 8                 |      | PCHGVOLT            | Co  | ntrol signal for | Low level    |
|            |                   |      |                     | pos | itive buck       | effective    |
| CN2:       |                   |      |                     |     |                  |              |
| NO.        | Interface         |      | Label               | Exj | planation        | Notes        |
| CN2        | 1                 |      | RS232_TX            | RS  | 232 Send         |              |
|            | 2                 |      | RS232_RX            | RS  | 232 Receive      |              |
|            | 3                 |      | GND-S1              | RS  | 232 Ground       |              |
| CN3:       |                   |      |                     |     |                  |              |
| NO.        | Interface         | Labe | el                  |     | Explanation      | Note         |
| CN3        | 1                 | RS4  | 85-                 |     | 485 negative     |              |
|            | 2                 | RS4  | 85+                 |     | 485 positive     |              |
|            | 3                 | GNI  | D_485               |     | 485 GND          |              |
|            | 4                 | 12V  | _485                |     | 485 +12V         |              |
|            | 7                 | INT  | INTERFACE_LOCATION_ |     | NTERFACE_        | Matching     |
|            |                   | GNI  | )                   |     | LOCATION_        | INTERFACE    |
|            |                   |      |                     |     | GND              | J18 or J19   |
|            | 8                 | INT  | ERFACE_LOCAT        | ION | INTERFACE        | 1            |
|            |                   |      |                     |     | _LOCATION        |              |
|            | 9                 | GNI  | GND-S3              |     | Ground           |              |
|            | 10                | +VC  | +VCC3               |     | +VCC3            |              |
| CN5 (sampl | led signal port): |      |                     |     |                  |              |
| NO.        | Interface         | Lab  | el                  | Ex  | planation        | Notes        |

| NO. | Interface | Label              | Explanation    | Notes |
|-----|-----------|--------------------|----------------|-------|
| CN5 | 3/4       | -CHGR.V/ -CHGR.N   | Negative BUCK  |       |
|     |           |                    | voltage        |       |
|     | 5/6       | +CHGR.V/ +CHGR.N   | Positive BUCK  |       |
|     |           |                    | voltage        |       |
|     | 7/8       | -BAT_IP.V/-BAT_IP. | -BAT voltage   |       |
|     |           | Ν                  | sampled(before |       |
|     |           |                    | FUSE )         |       |
|     | 9/10      | +BAT_IP.V/+BAT_IP. | +BAT voltage   |       |
|     |           | Ν                  | sampled(before |       |
|     |           |                    | FUSE )         |       |
|     | 11/12     | -BAT.V/-BAT.N      | -BAT voltage   |       |
|     |           |                    | sampled        |       |
|     | 13/14     | +BAT.V/+BAT.N      | +BAT voltage   |       |
|     |           |                    | sampled        |       |
|     | 15/16     | -BUS.V/-BUS.N      | -BUS voltage   |       |

|       |                    | sampled          |         |
|-------|--------------------|------------------|---------|
| 17/18 | +BUS.V/+BUS.N      | +BUS voltage     |         |
|       |                    | sampled          |         |
| 19/20 | -BUS_IP.V/-BUS_IP. | -BUS voltage     |         |
|       | Ν                  | sampled          |         |
| 21/22 | +BUS_IP.V/+BUS_IP. | +BUS voltage     |         |
|       | Ν                  | sampled          |         |
| 23/24 | BAT.TMP1+/BAT.TM   | Battery temp.    |         |
|       | P1-                |                  |         |
| 25/26 | BAT.TMP2+/BAT.TM   | Battery temp.    | No used |
|       | P2-                |                  |         |
| 27/28 | BUCKCT+/BUCK       | -BUCK inductance |         |
|       | CT-                | current          |         |
| 29/30 | BUCK+.CT+/BUCK+.   | +BUCK inductance |         |
|       | CT-                | current          |         |

CN11:

| NO.  | Interface   | Label        | explanation       | NOTES     |
|------|-------------|--------------|-------------------|-----------|
| CN11 | 1           | HFPOWER+     | HFPOWER+          |           |
|      | 2           | HFPOWER-     | HFPOWER-          |           |
|      | 7           | -15V         | -15V              |           |
|      | 8           | +15V         | +15V              |           |
|      | 9/10        | +5V          | +5V               |           |
|      | 11/12/13/14 | GND-D        | GND-D             |           |
|      | 15          | BATNUM4      | Signal for        |           |
|      |             |              | detecting battery |           |
|      |             |              | num.              |           |
|      | 16          | BATNUM3      | Signal for        |           |
|      |             |              | detecting battery |           |
|      |             |              | num.              |           |
|      | 17          | BATNUM2      | Signal for        |           |
|      |             |              | detecting battery |           |
|      |             |              | num.              |           |
|      | 18          | BATNUM1      | Signal for        |           |
|      |             |              | detecting battery |           |
|      |             |              | num.              |           |
|      | 21          | THRM1        | Charger1 temp.    |           |
|      | 22          | THRM0        | Charger 0 temp.   |           |
|      | 23          | BATREV_FAULT | Battery           | Low level |
|      |             |              | reverse polarity  | effective |
|      |             |              | detect            |           |
|      | 24          | CHGR_SCR     | SCR control       | Low level |
|      |             |              | signal            | effective |
|      | 25          | BUCK-PWM     | Negative BUCK     | Switching |

|    |          | PWM              | frequency |
|----|----------|------------------|-----------|
| 26 | BUCK+PWM | Positive BUCK    | 47KHZ     |
|    |          | PWM              |           |
| 27 | FAN_CNTL | Fan speed signal |           |
| 28 | FAN_DET  | Fan detect       |           |
| 29 | ~SD      | Off charger      | Low level |
|    |          | power            | effective |
| 30 | FAN_ST   | The signal for   |           |
|    |          | stop the fan     |           |

## 3.4 CHGR\_PSDR

## 3.4.1 Introduction of the CHGR\_PSDR

The circuit diagram of CHGR\_PSDR as shown in Figure 3.1.1 and detail describe as shown in Chapter 3.1.1.

## 3.4.2 Physical map of CHGR\_PSDR



Figure 3.4.1 Physical map of CHGR\_PSDR

## 3.4.3 Explanation for signal interface of CHGR\_PSDR

| NO.     | Label   | Explanation     |
|---------|---------|-----------------|
| J28/J34 | +BUS    | +BUS input port |
| J35/J37 | NEUTRAL | N port          |
| J29     | -BUS    | -BUS input port |
| J30/J32 | +BAT    | +BAT            |
| J36/J38 | NEUTRAL | Ν               |
| J31/J33 | -BAT    | -BAT            |

Signal:

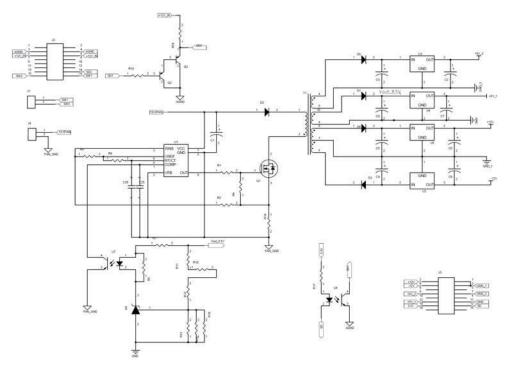
### J53 (Fan PORT):

| NO. Interface Label Explanation |
|---------------------------------|
|---------------------------------|

| J53           | 1         | FAN     |                       |
|---------------|-----------|---------|-----------------------|
|               | 2         | 12V_FAN |                       |
| J50 (Power Po | ort):     |         |                       |
| No.           | Interface | Label   | Explanation           |
| J50           | 3/4       | GND-D   | GND-D                 |
|               | 7         | +15V    | +15V                  |
|               | 8         | -15V    | -15V                  |
|               | 9/10      | +5V     | +5V                   |
|               | 14        | SD      | shutdown              |
| J51(Power Por | t):       |         |                       |
| NO.           | Interface | Label   | Explanation           |
| J51           | 1         | HF+     | HF+                   |
|               | 2         | GND_FAN | GND                   |
|               | 3         | 12V_FAN | 12V                   |
| J49           |           |         |                       |
| NO.           | Interface | Label   | Explanation           |
| J49           | +VCC3     | +VCC3   | Matching              |
|               | GND-S3    | GND-S3  | CHGR_CNTL CN802       |
| J52:          |           |         |                       |
| NO.           | Interface | Label   | Explanation           |
| J8            | 1         | 5V_TMP  | +5V                   |
|               | 2         | TMP1    |                       |
|               | 8         | S1      | Dial switches for the |
|               | 9         | S2      | number of batteries   |
|               | 10        | S3      |                       |
|               | 11        | S4      |                       |
|               | 12        | GND-S3  | GND-S3                |

CN5 and CN11 of CHGR\_PSDR matching the CN5 and CN11 of CHGR\_CNTL respectively.

### 4. Principle of Monitoring Module


Functional modules of monitoring module include input connecting plate, auxiliary power supply board, communicational power supply board, power socket plate MONITOR OUT\_CON\_Z, MONITOR OUT\_CON\_T, MONITOR IN\_CON\_Z, MONITOR IN\_CON\_T, control panel of monitoring module, LED lamp panel, key-press panel, interface board and LCD panel. The communicational power supply board, input connecting plate, and control panel of monitoring module are introduced as follows.

### 4.1 Communicational power supply board (COM\_SPS)

### 4.1.1 Introduction of functions of COM\_SPS

Main circuit structure of COM\_SPS is a structure of FLYBACK transformer. FAN12V supplies the power supply to start the IC3845 so that the output pin can output PWM wave form to

drive the MOS pipe. When the MOS pipe is on, original edge of transformer will store the energy and there is no output for the secondary edge; while when the MOS is off, energy stored in the transformer will be transferred to the circuits of secondary edge to produce  $+5V_1$ ,  $+5V_2$  and  $\pm 12V$  power supplies to supply power to main control panel of monitoring module.



### 4.1.2 Schematic circuit and physical map of COM\_SPS

Figure 4.1.1 Schematic Circuit of COM\_SPS



Figure 4.1.2 Physical Map of COM\_SPS

| J1  |           |          |                                                       |
|-----|-----------|----------|-------------------------------------------------------|
| 1   | J1-1/2    | SW1; SW2 | Short-connection of these pins under battery mode can |
|     |           |          | build the working power supply                        |
| J2  |           |          |                                                       |
| No. | Interface | Label    | Explanation                                           |
| 1   | J2-3/4    | AGND     | Ground                                                |

| 2   | J2-5/6   | +12V_IN  | Input +12V DC                                         |
|-----|----------|----------|-------------------------------------------------------|
| 3   | J2-14    | SD2      | Power off signal of SPS                               |
| 4   | J2-15/16 | SW2; SW1 | Short-connection of these pins under battery mode can |
|     |          |          | build the working power supply                        |
| .13 |          |          |                                                       |

| No. | Interface Label Explanation |           | Explanation                                  |
|-----|-----------------------------|-----------|----------------------------------------------|
| 1   | J3-1/3                      | GND_1     | +12V power supply, -12V corresponding ground |
| 2   | J3-2/4                      | +12V;-12V | Output power supply +12V and -12V            |
| 3   | J3-7                        | GND_3     | +5V_2 corresponding ground                   |
| 4   | J3-8                        | +5V_2     | Output power supply +5V of one group         |
| 5   | J3-11                       | GND       | +5V_1 corresponding ground                   |
| 6   | J3-12                       | +5V_1     | Output power supply +5V of another group     |
| 7   | J3-13                       | SD        | Power off signal of SPS                      |
| 8   | J3-14                       | 3.3V      | Input 3.3V power supply                      |

## 4.2 Input connecting plate (INPUT\_CNT)

## 4.2.1 Introduction of functions of input connecting plate

Input connecting plate connects the input main power and battery with input terminal of SPS.

## 4.2.2 Schematic circuit and physical map of input connecting plate

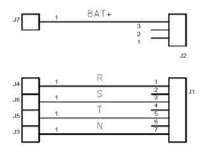



Figure 4.2.1 Schematic Circuit of COM\_SPS



Figure 4.2.2 Physical Map of COM\_SPS

### 4.2.3 Explanation for signal interface of input connecting plate

| No. | Interface | Label | Explanation                             |
|-----|-----------|-------|-----------------------------------------|
| 1   | J4        | R     | Input phase R of three-phase main power |
| 2   | J6        | S     | Input phase S of three-phase main power |

| 3 | J5 | Т    | Input phase T of three-phase main power |
|---|----|------|-----------------------------------------|
| 4 | J3 | Ν    | Input ground of three-phase main power  |
| 5 | J7 | BAT+ | Input battery positive                  |

| No. | Interface | Explanation                         |  |
|-----|-----------|-------------------------------------|--|
| 1   | J2        | J13 connected to SPS, providing SPS |  |
|     |           | battery positive input              |  |
| 2   | J1        | J12 connected to SPS, providing SPS |  |
|     |           | main power input                    |  |

### 4.3 Control panel of monitoring module (MONITOR BOARD)

## 4.3.1 Introduction of functions of MONITOR BOARD

MONITOR BOARD adopts the chip LM3S2950 for main control to achieve communication between monitoring module and power module, charger module and external module and display the data of working conditions of all machines by LCD screen.

### 4.3.2 Physical map of MONITOR BOARD



Figure 4.3.1 Physical Map of MONITOR BOARD

### 4.3.3 Explanation for signal interface of MONITOR BOARD

J5: button/emergent power off interface

J8: interface of LED lamp

J17: Communication port (data from SNMP card, dry node card, USB card, and RS485 card)

- J18: CAN communication port
- J19: interface of LCD back light

J23: input interface of FAN12V power supply

CN6: power supply input interface of COM\_SPS

CN8: SW1; SW2 (connect with COM\_SPS-J1)

CN9: interface of LCD

## **Chapter II Start Debugging of Module**

Note: only the debugging steps of modules after maintenance are listed, and other debugging shall refer to rules for debugging of single module.

### 1. Start Debugging of Power Module

#### 1.1 Power on of DC source and BUS voltage sampling

#### Measurement procedures:

- (1) Adjust the output voltage of two DC sources to 240V/1.5A, connect the output terminals of DC sources with positive and negative input terminals of battery of UPS, and then connect two universal meters with positive and negative BUS.
- (2) Take off the IGBT driving board in inverter three-phase, connect the J101, J201, and J301 in IGBT connecting plate with IGBT driving plate specially used for debugging (that is, adding a 2.2K resistance to 8 and 9 (fault) signal pins of this socket).
- (3) Take a normally open not-locking switch as a button of power on to connect with CN011 of control panel, turn on the DC source output, touch the button of power on lightly, and then the UPS will build the working power supply. Press the button of power on for 5s, the relay of soft start board will be closed. BUS voltage is rising from 0, observe the voltage value after the BUS voltage of universal meter is stable until the BUS voltage is up to 360V±2V.
- (4) At the same time, close outputs of two DC sources and discharge the electricity of positive and negative BUS with discharge resistance.
- **Note:** for maintained and debugged module, it is suggested to start the PFC of three phases one by one to avoid damaging more boards when starting the machine. It can disconnect phase S and T (can remove SCR driving signal cables of corresponding rectification board) and only connect the phase R to start the machine, and then measure the BUS voltage; connect the phase S and T in order to start the machine, and then measure the BUS voltage.

#### Judgment criteria:

BUS voltage is: 360V±2V.

# 1.2 Rectification of output voltage and measurement of output frequency

### Measurement procedures:

- (1) Take down the IGBT driving board specially used for debugging, put original IGBT driving board to original position, and it shall not be misplaced or inverted.
- (2) Turn on the two DC sources, press button of power on for 5s, and the

inverter relay will be closed and light in front panel of the module will be on after about 10s. There is some output for the module then.

- (3) Measure the output voltages of three phases with universal meter separately, debug the software through serial port, and adjust the output voltage to 221VAC±0.1V.
- (4) Use oscilloscope or universal meter to measure the frequencies of output voltages in three phases which shall be 50Hz±0.5Hz.
- **Note:** for maintained and debugged module, it is suggested to start the inverters of three phases one by one to avoid damaging more boards when starting the machine. It can disconnect inverter driving boards in phase S and T which shall be replaced by special tools of measurement and only connect the driving board in phase R to start the machine, and then observe the soft start process of inverter voltage with oscilloscope. Connect the inverter driving boards in phase S and T in order, and then observe the inverter closing process by referring to measurement procedures of inverter in phase R.

#### Judgment criteria:

Output voltage of three phases is:  $221VAC\pm0.1V$ , and output frequency of three phases is  $50Hz\pm0.5Hz$ .

## 2. Start Debugging of Charger module

### 2.1 Main power current-limiting start and BUS voltage sampling

#### **Measurement procedures:**

- (1) Adjust the output voltage of adjustable AC sources in three phases to 220V/2A, connect the outputs of AC source with main power input terminal of charger module, and then connect two universal meters with positive and negative BUS separately.
- (2) Remove the output fuse in CHGR\_PSDR.
- (3) Connect the switch wire used to start the machine with CN801 in control panel, turn on the output of AC source, and then UPS will build the working power supply. Press button of power on for 5s, and then the relay of soft start board will be closed. BUS voltage is rising from 0, observe the voltage value after the BUS voltage of universal meter is stable until the BUS voltage is up to 360V±2V.
- (4) Close output of AC source and discharge the electricity of positive and negative BUS with discharge resistance.
  - **Note:** for maintained and debugged module, it is suggested to start the PFC of three phases one by one to avoid damaging more boards when starting the machine. It can disconnect phase S and T (can remove SCR driving signal cables of corresponding rectification board) and only connect the

phase R to start the machine, and then measure the BUS voltage; connect the phase S and T in order to start the machine, and then measure the BUS voltage.

#### Judgment criteria:

BUS voltage is: 360V±2V.

#### 2.2 Measurement of charging voltage

#### **Measurement procedures:**

- (1) Put the removed output fuse to original places.
- (2) Turn on the AC source, press button of power on for 5s, indicator light in front panel of the module will be on after about 10s. There is some output for the charger module then.
- (3) Within 30s upon the charger is started, measure the positive/negative charging voltage with universal meter which shall be even charging voltage  $285VDC\pm4V$  (when measuring the single charger module, LCD is not online, the software defaults to set the voltage output as that of 20 pieces batteries, even charging voltage = 14.25 \* pieces of battery, float charging voltage = 13.35 \* pieces of battery, and the voltage accuracy is 2%; what measured within 30s upon starting is even charging voltage.).
- **Note:** for maintained and debugged module, it is suggested to start the PFC of three phases one by one to avoid damaging more boards when starting the machine. It can disconnect phase S and T and only connect the phase R to start the machine, and then measure the charging voltage; connect the phase S and T in order to start the machine, and then measure the charging voltage.

#### Judgment criteria:

Positive/negative charging voltage is: even charging voltage is 285VDC±4V.

## Chapter III Fault and Warning Code of Module

### 1. Fault and Warning Code of Power Module

### 1.1 Warning code of power module

Transformation principle of warning code:

The warning code read through serial port is a combined decimal number, and it needs analysis to get the real warning code.

The transportation process is:

Firstly transform the read decimal number into hexadecimal number which equals the summary of all warning codes. Every warning code only accounts for one bit, so it is easy to know the hexadecimal number is the summary of which warning codes by looking up the warning code table.

For example: if 1684 is read in serial port, and it is 0x0694 by transforming into hexadecimal number, and then 0x0694 = 0x0004+0x0010+0x0080+0x0200+0x0400. In this way, it is known that 1684 is 5 warnings.

| Num | Low warning code  | Interpretation                            |
|-----|-------------------|-------------------------------------------|
| 1.  | 0x0001            | EPO                                       |
|     |                   | Fault of output overload (exceeding the   |
| 2.  | 0x0002            | overload time)                            |
| 3.  | 0x0004            | CAN communication is abnormal.            |
| 4.  | 0x0008            | Overload of output                        |
| 5.  | 0x0010            | Battery is disconnected.                  |
| 6.  | 0x0020            | ECO unsteady                              |
| 7.  | 0x0040            | Over-current of output                    |
|     |                   | Difference between main power and         |
| 8.  | 0x0080            | bypass                                    |
| 9.  | 0x0100            | Battery voltage abnormal                  |
| 10. | 0x0200            | Read-write of EEPROM is in error.         |
| 11. | 0x0400            | Fault of fan                              |
| 12. | 0x0800            | Phase sequence of main power is in error. |
| 13. | 0x1000            | Phase sequence of bypass is in error.     |
| 14. | 0x2000            | Loss of N cable                           |
| 15. | 0x4000            | Fault of synchronizing signal             |
| 16. | 0x8000            | Fault of synchronizing pulse              |
| 17. | High warning code |                                           |
| 18. | 0x0001            | Main power is abnormal.                   |
| 19. | 0x0002            | Bypass is abnormal.                       |
| 20. | 0x0004            | Low voltage of battery                    |
| 21. | 0x0008            | Retaining                                 |
| 22. | 0x0010            | Charger is not online.                    |
| 23. | 0x0020            | Retaining                                 |
| 24. | 0x0040            | Frequency of bypass is abnormal.          |
| 25. | 0x0080            | Overvoltage of output                     |
| 26. | 0x0100            | Physical address is abnormal.             |
| 27. | 0x0200            | PFC in phase R is abnormal.               |
| 28. | 0x0400            | PFC in phase S is abnormal.               |
| 29. | 0x0800            | PFC in phase T is abnormal.               |
| 30. | 0x1000            | Relay abnormal                            |
| 31. | 0x2000            | Bypass STS disconnect                     |

| 32. | 0x4000 | Bypass STS short  |
|-----|--------|-------------------|
| 33. | 0x8000 | Quit ECO abnormal |
|     |        |                   |

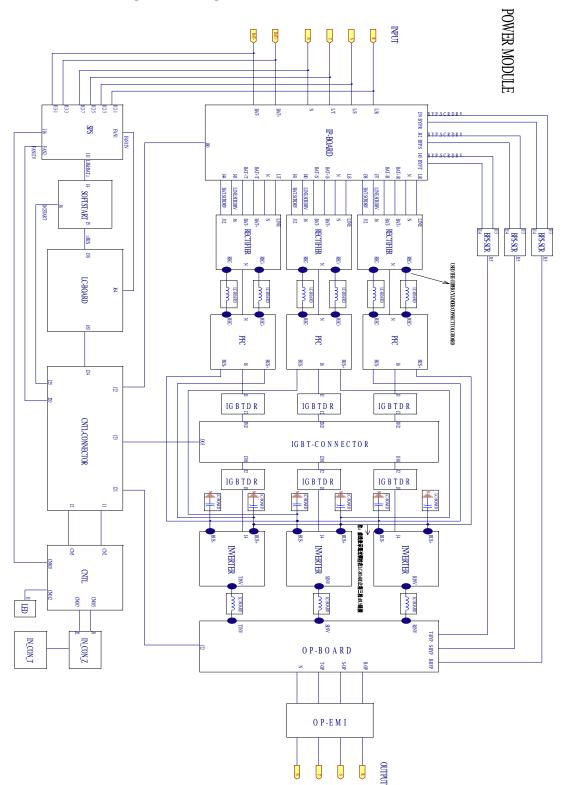
## 1.2 Fault code of power module

| Num | Fault | Whether it has bypass         | Interpretation             |
|-----|-------|-------------------------------|----------------------------|
|     | code  | output after the fault or not |                            |
| 1.  | 1     | YES                           | High voltage of BUS        |
| 2.  | 2     | YES                           | Low voltage of BUS         |
| 3.  | 3     | YES                           | Unbalance of BUS           |
| 4.  | 4     | YES                           | Short-circuit of BUS       |
| 5.  | 5     | YES                           | Bypass wiring error        |
|     |       | YES                           | Soft start of BUS is       |
| 6.  | 6     |                               | overtime.                  |
|     |       | YES                           | Soft start of inverter is  |
| 7.  | 7     |                               | overtime.                  |
| 8.  | 8     | YES                           | High voltage of inverter   |
| 9.  | 9     | YES                           | Low voltage of inverter    |
|     |       | NO                            | Output short-circuit in R  |
| 10. | 10    |                               | phase                      |
|     |       | NO                            | Output short-circuit in S  |
| 11. | 11    |                               | phase                      |
|     |       | NO                            | Output short-circuit in T  |
| 12. | 12    |                               | phase                      |
|     |       | NO                            | Output short-circuit in RS |
| 13. | 13    |                               | phase                      |
|     |       | NO                            | Output short-circuit in ST |
| 14. | 14    |                               | phase                      |
|     |       | NO                            | Output short-circuit in TR |
| 15. | 15    |                               | phase                      |
|     |       | YES                           | Output negative work in    |
| 16. | 16    |                               | phase R is abnormal.       |
| 17. |       | YES                           | Output negative work in    |
|     | 17    |                               | phase S is abnormal.       |
| 18. |       | YES                           | Output negative work in    |
|     | 18    |                               | phase T is abnormal.       |
| 19. | 19    | NO                            | Overload fault             |
| 20. |       | NO                            | Battery of the module is   |
|     | 20    |                               | abnormal.                  |
| 21. | 21    | YES                           | Retaining                  |
| 22. | 22    | YES                           | Over-temperature fault     |

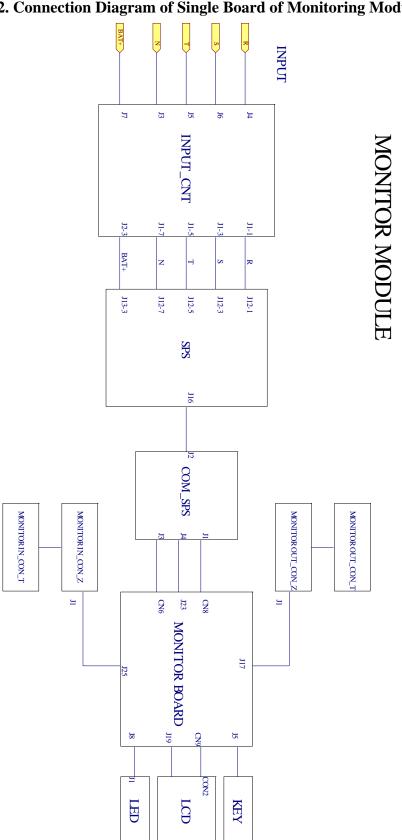
| 23. | 23 | YES | Fault of synchronizing signal |
|-----|----|-----|-------------------------------|
| 24. | 24 | YES | Fault of synchronizing pulse  |
| 25. | 25 | YES | Sticking of relay             |
| 26. | 26 | YES | Fault of main power SCR       |
| 27. | 27 | YES | Fault of CAN bus              |
| 28. | 28 | YES | Fault of total negative work  |
| 29. | 29 | YES | Physical address is conflict. |
| 30. |    | NO  | IGBT is in short-circuit      |
|     | 30 |     | (useless)                     |
| 31. | 31 | NO  | Inverter abnormal             |
| 32. | 32 | NO  | Power setting error           |

# 2. Fault and Warning Code of Charger module

## 2.1 Warning code of charger module


| Num | Warning code | Interpretation                            |
|-----|--------------|-------------------------------------------|
| 1.  | 0x0001       | Battery is over charged.                  |
| 2.  | 0x0002       | Battery is connected inversely.           |
| 3.  | 0x0004       | Battery is disconnected.                  |
| 4.  | 0x0008       | Charger is abnormal.                      |
| 5.  | 0x0010       | Charger is in short circuit.              |
| 6.  | 0x0020       | None                                      |
| 7.  | 0x0040       | Charger suicide                           |
| 8.  | 0x0080       | Communication of charger is abnormal.     |
| 9.  | 0x0100       | Physical address is in error.             |
| 10. | 0x0200       | LCD is not online.                        |
| 11. | 0x0400       | Set of charging voltage is in error.      |
| 12. | 0x0800       | Set of charging current is in error.      |
| 13. | 0x1000       | EPO enable                                |
| 14. | 0x2000       | Fault of fan                              |
| 15. | 0x4000       | Phase sequence of main power is in error. |
| 16. | 0x8000       | Loss of N cable                           |

## 2.2 Fault code of charger module


| Num. | Fault code | Interpretation      |
|------|------------|---------------------|
| 1.   | 1          | BUS soft start fail |
| 2.   | 2          | BUS soft start fail |
| 3.   | 3          |                     |

| 4.  | 4  |                                          |
|-----|----|------------------------------------------|
| 5.  | 5  | Short-circuit in charger                 |
| 6.  | 6  | Short-circuit in charger                 |
| 7.  | 7  | Battery polarity reverse                 |
| 8.  | 8  | Relay of charger is abnormal             |
| 9.  | 9  | Input fuse disconnect                    |
| 10. | 10 | Input fuse disconnect                    |
| 11. | 11 | Output fuse disconnect                   |
| 12. | 12 | Physical address of charger is in error. |
| 13. | 13 | Physical address of charger is in error. |

# Appendix:



## 1. Connection Diagram of Single Board of Power Module



2. Connection Diagram of Single Board of Monitoring Module